TY - JOUR
T1 - UVB radiation preferentially induces recruitment of memory CD4+ T cells in normal human skin: long-term effect after a single exposure
AU - Di Nuzzo, S.
AU - Sylva-Steenland, R. M.
AU - de Rie, M. A.
AU - Das, P. K.
AU - Bos, J. D.
AU - Teunissen, M. B.
PY - 1998
Y1 - 1998
N2 - Acute, low-doses of ultraviolet (UV)-B radiation affect the immune competent cells of the skin immune system. In this study, we examined the time-dependent changes of the cutaneous T cell population in normal human volunteers following a single local exposure to UV. Solar-simulated UV radiation caused an initial decrease in intraepidermal T cell numbers, even leading to T cell depletion at day 4, whereupon a considerable infiltration of T cells in the epidermis occurred that peaked at day 14. In the dermis the number of T cells was markedly increased at days 2 (peak) and 4 after irradiation, and subsequently declined to the nonirradiated control values at day 10. Double-staining with several T cell markers showed that the T cells, infiltrating the (epi)dermis upon UV exposure, were almost exclusively CD4+ CD45RO+ T cells, expressing an alpha/beta type T cell receptor, but lacking the activation markers HLA-DR, VLA-1, and IL-2R. Application of UVB radiation resulted in similar dynamics of T cells, indicating that the UVB wavelengths within the solar-simulated UV radiation were responsible for the selective influx of CD4+ T cells. In conjunction with UVB-induced alterations in the type and function of antigen-presenting cells (i.e., Langerhans cells and macrophages), the changes of the cutaneous T cell population may also contribute to UVB-induced immunosuppression at skin level in man
AB - Acute, low-doses of ultraviolet (UV)-B radiation affect the immune competent cells of the skin immune system. In this study, we examined the time-dependent changes of the cutaneous T cell population in normal human volunteers following a single local exposure to UV. Solar-simulated UV radiation caused an initial decrease in intraepidermal T cell numbers, even leading to T cell depletion at day 4, whereupon a considerable infiltration of T cells in the epidermis occurred that peaked at day 14. In the dermis the number of T cells was markedly increased at days 2 (peak) and 4 after irradiation, and subsequently declined to the nonirradiated control values at day 10. Double-staining with several T cell markers showed that the T cells, infiltrating the (epi)dermis upon UV exposure, were almost exclusively CD4+ CD45RO+ T cells, expressing an alpha/beta type T cell receptor, but lacking the activation markers HLA-DR, VLA-1, and IL-2R. Application of UVB radiation resulted in similar dynamics of T cells, indicating that the UVB wavelengths within the solar-simulated UV radiation were responsible for the selective influx of CD4+ T cells. In conjunction with UVB-induced alterations in the type and function of antigen-presenting cells (i.e., Langerhans cells and macrophages), the changes of the cutaneous T cell population may also contribute to UVB-induced immunosuppression at skin level in man
U2 - https://doi.org/10.1046/j.1523-1747.1998.00220.x
DO - https://doi.org/10.1046/j.1523-1747.1998.00220.x
M3 - Article
C2 - 9620309
SN - 0022-202X
VL - 110
SP - 978
EP - 981
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 6
ER -