Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion

D. Michiel Pegtel, Martijn D. B. van de Garde, Jaap M. Middeldorp

Research output: Contribution to journalArticleAcademicpeer-review

106 Citations (Scopus)

Abstract

The class of persistent gamma-herpesviruses has developed a variety of strategies that exploit host-cell regulatory pathways to ensure a long-lasting, well-balanced infection of their host. However when these pathways are deregulated, an otherwise harmless infection can lead to disease including cancer. We recently demonstrated that the human herpes virus 4 (HHV4) also known as Epstein-Barr virus (EBV), encodes for small regulatory non-coding microRNAs (miRNAs) that can be transferred from an infected cell to uninfected neighboring cells. Upon arrival these miRNAs are functional in the recipient cell, in that they are able to down regulate specific target genes. These secreted miRNAs are transported to recipient cells via small nano-sized vesicles (known as exosomes) that are of endosomal origin, formed as intraluminal vesicles (ILV) inside multivesicular bodies (MVB). One question that needs to be addressed is how viral miRNAs are sorted into these exosomes. Mature miRNAs, including those of viral origin, are loaded into RNA-induced silencing complexes (RISC) for gene silencing via blocking mRNA translation and/or initiating mRNA decay. Recent insights indicate that cytoplasmic RNA granules rich in RISC complexes are closely associated with endosomes. In fact, selective components of RISC, including GW182 and Argonaut proteins, miRNAs and mRNAs are present in exosomes. Thus miRNA function, mRNA stability and exosome-mediated intercellular communication converge at the level of endosomes. Since endosomes can be considered as key intracellular cross-roads that regulate communication of cells with their exterior, including neighboring cells, it is perhaps not surprising that viruses have found means to exploit this pathway to their benefit. Little is known however, how and if (micro) RNA species are specifically sorted into ILVs and what (micro)RNA-binding proteins are involved. Here we discuss recent developments relating to intracellular trafficking and function of miRNA-containing protein complexes that EBV may exploit for promoting or restricting miRNAs sorting into exosomes for intercellular regulatory functions. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation
Original languageEnglish
Pages (from-to)715-721
JournalBiochimica et Biophysica Acta-Gene Regulatory Mechanisms
Volume1809
Issue number11-12
DOIs
Publication statusPublished - 2011

Cite this