

EuGMSL®ND®N2022

18[™] INTERNATIONAL CONGRESS > SEPTEMBER 28-3O

Professor Hein van Hout

Depts General Practice & Medicine for Older Persons

CONFLICT OF INTEREST DISCLOSURE

Fellow of the interRAI collaborative network

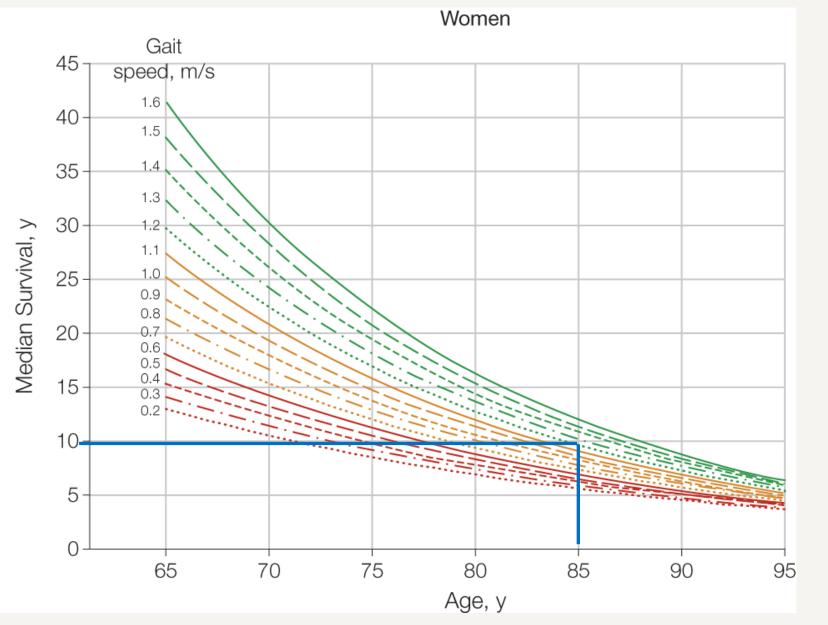
Grants from EU and ZonMw (Dutch Governmental funding)

Individualized <u>CARE</u> for <u>OLD</u>er Persons with Complex Chronic Conditions at home and in nursing homes

2021-2025

Prof. Dr. Hein van Hout

Depts. General Practice & Medicine for Older Persons



Background

- With aging the number of persons with <u>Complex Chronic Conditions</u> (CCC) is rapidly expanding.
- Making prognoses on health outcomes is extremely difficult.
- Estimating impact of specific treatments is even harder.
- Little evidence from rare RCTs. Strongly underrepresentation of persons with CCC
- Could real life data with high quality help us?

Life expectancy based on gait speed

Helpful at group level but less accurate for specific individuals with CCC...

Studenski JAMA 2011

OBJECTIVE

To improve prognoses and estimation of treatment impact for older persons with complex chronic conditions

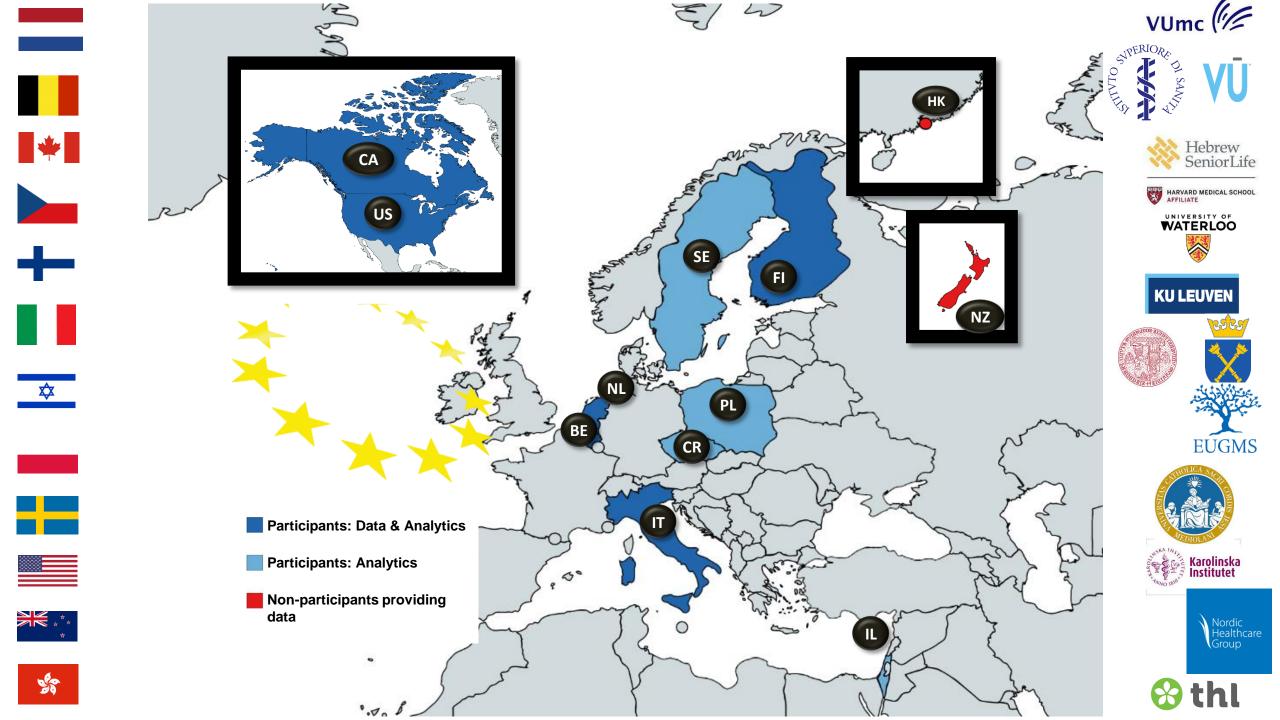
by developing, validating, and piloting the next generation prediction algorithms

Improve prognostics on 6 outcomes:

(i) Life expectation

(ii) Unplanned hospital admission

(iii) Change in self care functioning- ADL


(iv) Change in cognitive functioning — CPS

(v) Health instability – CHESS

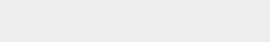
(vi) Change in health related quality of life- HUI-III

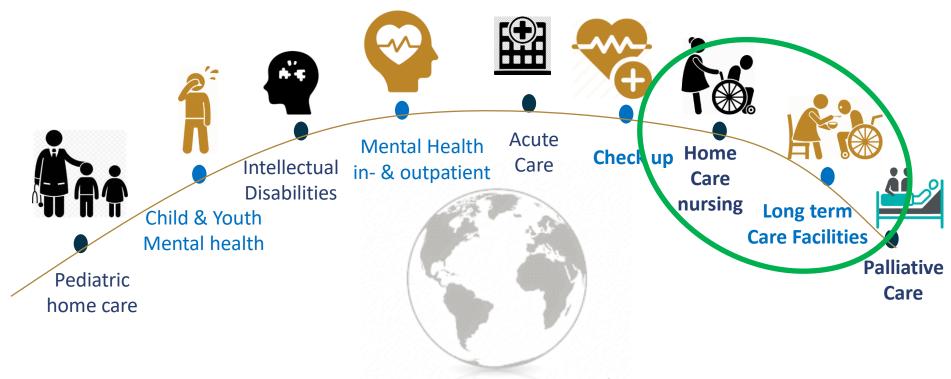
Speaking One Language for High Quality Care Worldwide

interRAL

Minimal Data Set with embedded decision support

interRAI assessment


- Cognition
- Communication
- Mood and behavior
- Psychosocial well-being
- Functional status
- Body conditions
- Medications
- Treatments
- Nutritional status
- Treatments



Minimal Data Sets with embedded decision support an International standard

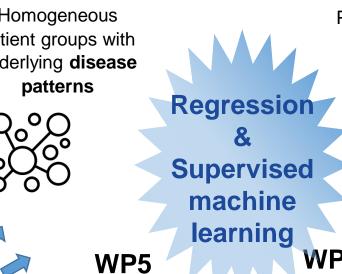
With Core items and Core scales persons can be followed through care settings

WORKPACKAGES

WP1 Coordination & Management

WP2 **Dataset harmonization** linking InterRAI and administrative data 52 million care records longitudinally 8 countries

6 Health Outcomes


Training

datasets

Validation

datasets

Impact of

treatments on health

outcomes

WP6 Impact of nonpharmacological

pharmacological interventions

WP9 Impact of COVID on outcomes

WP4

health outcomes

Co-creation and pilots with patients

Predictive models for WP7

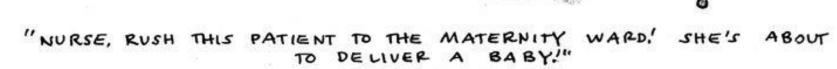
Platform for individualized decision support

professionals and

Timeline workpackages

	Yea	ır 1	N	OW Yea	ır 2		Yea	ır 3		Yea	r 4
1. Coordination											
2. Local data linkage and data harmonization											
3. Identifying homogeneous groups of patients sharing common patterns of CCC											
4. Profiles of health trajectories											
5. Pharmacological interventions that modify health trajectories											
6. Non-pharmacological interventions (NPI) that modify health trajectories											
7. E-Platform for individual prognostication and treatment response pilots											
9. Impact of COVID-19 on health and well-being											
8. Communication & Dissemination											

EXAMPLE PROGNOSTIC DASHBOARD



Your prognosis		if you start 'Physical therapy'
Life expectancy	24-28 months	+ 1 month
Acute hospitalisation in 6 months	Low risk <5%	→ Unchanged
ADL worsening in 6 months	Medium risk 35%	← Unchanged
Cognitive worsening in 6 months	Low risk <5%	←→ Unchanged
Health instability in 6 months	High risk 60%	30%
HR Quality of Life deterioration Med	dium risk! 35%	<5% ✓ CHANGED: Low risk

Challenges

Can we generalise prognostications?

External validations across countries, care contexts, subgroups

Can we estimate treatment response accurately? Can we sufficiently deal with bias by indication?

Can we identify treatment eligibility to mimic treated and non treated groups?

Did Covid impact the prognostications?

Addressed in WP9 thx to additional Canadian Funding

Angevaare JAMDA 2022, McArthur JAMDA 2021, 2022

E.b.		-	
Hein VAN HOUT	Amsterdam UMC - General Practice, Amsterdam	NL	coordinator
Laurian Jongejan	Amsterdam UMC - General Practice, Amsterdam	NL	manager
Karlijn JOLING Amsterdam UMC - Medicine fr Older Persons, Amsterdam		NL	WP6 Lead
Graziano ONDER	Istituto Superiore Di Sanita, Roma Nobel Prize Museum	IT	co-coordinato
Mark HOOGENDOORN	VU University - Artificial Intelligence, Amsterdam	NL	WP6 co-lead
Rossella LIPEROTI	Catholic University Sacro Cuore- Geriatric medicine, Roma	IT	WP5 lead
John MORRIS	Hebrew senior Life, Boston	USA	WP4 lead
Elisabeth HOWARD	Hebrew senior Life, Boston	USA	WP4 co-lead
Erez SCHACHTER	Profility (Israel) LTD - artificial intelligence, Tel Aviv	IS	WP4 co-lead
Davide Liborio VETRANO	Karolinska Institute - Geriatric research, Stockhom	SWE	WP3 lead
Matti MÄKELÄ	THL - Geriatric research, Helsinki	FIN	WP2 lead
Jokke Häsä	THL - data specialist, Helsinki	FIN	WP2 co-lead
Katarzyna SZCZERBINSKA	University Jagiellonski, Krakov	POL	WP6 co-lead
Anja DECLERCQ	Catholic University of Leuven	BEL	WP8 lead
George RUPPE	European Union Geriatric Medicine, Brussels	EU	WP8 co-lead
Riikka-Leena LESKELÄ	NHG CONSULTING, Helsinki	FIN	WP7 lead
Daniela FIALOVÁ	Charles University- pharmaceutical research, Prague	CZ	WP5 Co-lead
John HIRDES	University of Waterloo - Health services research	CAN	WP9 lead

