A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways

J. Gloerich, N. van Vlies, G. A. Jansen, S. Denis, J. P. N. Ruiter, M. A. van Werkhoven, M. Duran, F. M. Vaz, R. J. A. Wanders, S. Ferdinandusse

Research output: Contribution to journalArticleAcademicpeer-review

66 Citations (Scopus)

Abstract

Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the phytol metabolites phytanic and pristanic acid. In wild-type mice, plasma fatty acid levels decreased after phytol feeding, whereas in PPARalpha-/- mice, the already elevated fatty acid levels increased. In addition, PPARalpha-/- mice were found to be carnitine deficient in both plasma and liver. Dietary phytol increased liver free carnitine in wild-type animals but not in PPARalpha-/- mice. Investigation of carnitine biosynthesis revealed that PPARalpha is likely involved in the regulation of carnitine homeostasis. Furthermore, phytol feeding resulted in a PPARalpha-dependent induction of various peroxisomal and mitochondrial beta-oxidation enzymes. In addition, a PPARalpha-independent induction of catalase, phytanoyl-CoA hydroxylase, carnitine octanoyltransferase, peroxisomal 3-ketoacyl-CoA thiolase, and straight-chain acyl-CoA oxidase was observed. In conclusion, branched-chain fatty acids are physiologically relevant ligands of PPARalpha in mice. These findings are especially relevant for disorders in which branched-chain fatty acids accumulate, such as Refsum disease and peroxisome biogenesis disorders
Original languageEnglish
Pages (from-to)716-726
JournalJournal of Lipid Research
Volume46
Issue number4
DOIs
Publication statusPublished - 2005

Cite this