Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. van Gemert, J. S. Nelson, A. J. Welch

Research output: Contribution to journalArticleAcademicpeer-review

60 Citations (Scopus)

Abstract

The thermal response of port wine stain (PWS) skin to a combined treatment of pulsed laser irradiation and cryogen spray cooling (CSC) was analyzed through a series of simulations performed with a novel optical-thermal model that incorporates realistic tissue morphology. The model consisted of (1) a three-dimensional reconstruction of a PWS biopsy, (2) a Monte Carlo optical model, (3) a finite difference heat transfer model, and (4) an Arrhenius thermal damage calculation. Simulations were performed for laser pulses of 0.5, 2, and 10 ms and a wavelength of 585 nm. Simulated cryogen precooling spurts had durations of 0, 20, or 60 ms and terminated at laser onset. Continuous spray cooling, which commenced 60 ms before laser onset and continued through the heating and relaxation phases, was also investigated. The predicted response to CSC included maximal pre-irradiation temperature reductions of 27 degrees C at the superficial surface and 12 degrees C at the dermoepidermal junction. For shorter laser pulses (0.5, 2 ms), precooling significantly reduced temperatures in superficial regions, yet did not effect superficial vessel coagulation. Continuous cooling was required to reduce significantly thermal effects for the 10-ms laser pulse. For the PWS morphology and treatment parameters studied, optimal damage distributions were obtained for a 2-ms laser pulse with a 60-ms precooling spurt. Epidermal and vascular morphology as well as laser pulse duration should be taken into account when planning CSC/laser treatment of PWS. Our novel, realistic-morphology modeling technique has significant potential as a tool for optimizing PWS treatment parameters
Original languageEnglish
Pages (from-to)145-157
JournalLasers in surgery and medicine
Volume26
Issue number2
DOIs
Publication statusPublished - 2000

Cite this