TY - JOUR
T1 - Biomechanical factors as triggers of vascular growth
AU - Hoefer, Imo E.
AU - den Adel, Brigit
AU - Daemen, Mat J. A. P.
PY - 2013
Y1 - 2013
N2 - Haemodynamic factors influence all forms of vascular growth (vasculogenesis, angiogenesis, arteriogenesis). Because of its prominent role in atherosclerosis, shear stress has gained particular attention, but other factors such as circumferential stretch are equally important to maintain the integrity and to (re)model the vascular network. While these haemodynamic forces are crucial determinants of the appearance and the structure of the vasculature, they are in turn subjected to structural changes in the blood vessels, such as an increased arterial stiffness in chronic arterial hypertension and ageing. This results in an interplay between the various forces (biomechanical forces) and the involved vascular elements. Although many molecular mediators of biomechanical forces still need to be identified, there is plenty of evidence for the causal role of these forces in vascular growth processes, which will be summarized in this review. In addition, we will discuss the effects of concomitant diseases and disorders on these processes by altering either the biomechanics or their transduction into biological signals. Particularly endothelial dysfunction, diabetes, hypercholesterolaemia, and age affect mechanosensing and -transduction of flow signals, thereby underpinning their influence on cardiovascular health. Finally, current approaches to modify biomechanical forces to therapeutically modulate vascular growth in humans will be described
AB - Haemodynamic factors influence all forms of vascular growth (vasculogenesis, angiogenesis, arteriogenesis). Because of its prominent role in atherosclerosis, shear stress has gained particular attention, but other factors such as circumferential stretch are equally important to maintain the integrity and to (re)model the vascular network. While these haemodynamic forces are crucial determinants of the appearance and the structure of the vasculature, they are in turn subjected to structural changes in the blood vessels, such as an increased arterial stiffness in chronic arterial hypertension and ageing. This results in an interplay between the various forces (biomechanical forces) and the involved vascular elements. Although many molecular mediators of biomechanical forces still need to be identified, there is plenty of evidence for the causal role of these forces in vascular growth processes, which will be summarized in this review. In addition, we will discuss the effects of concomitant diseases and disorders on these processes by altering either the biomechanics or their transduction into biological signals. Particularly endothelial dysfunction, diabetes, hypercholesterolaemia, and age affect mechanosensing and -transduction of flow signals, thereby underpinning their influence on cardiovascular health. Finally, current approaches to modify biomechanical forces to therapeutically modulate vascular growth in humans will be described
U2 - https://doi.org/10.1093/cvr/cvt089
DO - https://doi.org/10.1093/cvr/cvt089
M3 - Review article
C2 - 23580605
SN - 0008-6363
VL - 99
SP - 276
EP - 283
JO - Cardiovascular research
JF - Cardiovascular research
IS - 2
ER -