Bradykinin-induced asthmatic fibroblast/myofibroblast activities via bradykinin B2 receptor and different MAPK pathways

Federica Sabatini, Fabrizio Luppi, Loredana Petecchia, Antonino Di Stefano, Anna M. Longo, Alessandra Eva, Cristina Vanni, Pieter S. Hiemstra, Peter J. Sterk, Valentina Sorbello, Leonardo M. Fabbri, Giovanni A. Rossi, Fabio L. M. Ricciardolo

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)

Abstract

Bradykinin drives normal lung fibroblasts into myofibroblasts, induces fibroblast proliferation and activates mitogen activated protein kinase pathways (MAPK) but its effects on bronchial fibroblasts from asthmatics (HBAFb) have not been yet studied. We studied bradykinin-induced fibroblast proliferation and differentiation and the related intracellular mechanisms in HBAFb compared to normal bronchial fibroblasts (HNBFb). Bradykinin-stimulated HBAFb and HNBFb were used to assess: bradykinin B2 receptor expression by Western blot analysis; cell proliferation by [(3)H] thymidine incorporation; α-smooth muscle actin (SMA) expression/polymerization by Western blot and immunofluorescence; epidermal growth factor (EGF) receptor, extracellular-regulated kinase (ERK) 1/2 and p38 MAPK activation by immunoprecipitation and Western blot, respectively. Constitutive bradykinin B2 receptor and α-SMA expression was higher in HBAFb as compared to HNBFb. Bradykinin increased bradykinin B2 receptor expression in HBAFb. Bradykinin, via bradykinin B2 receptor, significantly increased fibroblast proliferation at lower concentration (10(-11)M) and α-SMA expression/polymerization at higher concentration (10(-6)M) in both cells. Bradykinin increased ERK1/2 and p38 phosphorylation via bradykinin B2 receptor; EGF receptor inhibitor AG1478 and panmetalloproteinase inhibitor GM6001 blocked bradykinin-induced ERK1/2 activation but not p38 phosphorylation. Bradykinin, via bradykinin B2 receptor, induced EGF receptor phosphorylation that was suppressed by AG1478. In HBAFb AG1478, GM6001, the ERK1/2-inhibitor U0126 and the p38 inhibitor SB203580 suppressed bradykinin-induced cell proliferation, but only SB203580 reduced myofibroblast differentiation. These data indicate that bradykinin is actively involved in asthmatic bronchial fibroblast proliferation and differentiation, through MAPK pathways and EGF receptor transactivation, by which bradykinin may contribute to airway remodeling in asthma, opening new horizons for potential therapeutic implications in asthmatic patients
Original languageEnglish
Pages (from-to)100-109
JournalEuropean journal of pharmacology
Volume710
Issue number1-3
DOIs
Publication statusPublished - 2013

Cite this