Abstract

Cerebrospinal fluid (CSF) has historically been considered to function as a sink for brain-derived waste disposal. Recent work suggested that CSF interacts even more intensely with brain tissue than previously recognized, through perivascular spaces that penetrate the brain. Cardiac pulsations, vasomotion, and respiration have been suggested to drive CSF flow in these perivascular spaces, thereby enhancing waste clearance. However, the intrinsic role of CSF production in relation to its distribution volume (turnover) is not an explicit component of recent concepts on brain clearance. Here, we review the work on CSF turnover and volume, focusing on preclinical evidence. Herein, we highlight the use of MRI in establishing CSF-related parameters. We describe the impact of sleep, effect of anesthesia, aging, and hypertension on CSF turnover, and how this relates to brain clearance. Evaluation of the available evidence suggests that CSF turnover is a major determinant in brain clearance. In addition, we propose that several putative drivers of brain clearance, but also conditions associated with impaired clearance, such as aging, may actually relate to altered CSF turnover.
Original languageEnglish
JournalNMR in biomedicine
Early online date2023
DOIs
Publication statusE-pub ahead of print - 2023

Keywords

  • MRI
  • brain
  • cerebrospinal fluid
  • glymphatic system
  • perivascular spaces

Cite this