CineECG: A novel method to image the average activation sequence in the heart from the 12-lead ECG

Machteld J Boonstra, Dana H Brooks, Peter Loh, Peter M van Dam

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The standard 12-lead electrocardiogram (ECG) is a diagnostic tool to asses cardiac electrical activity. The vectorcardiogram is a related tool that represents that activity as the direction of a vector. In this work we investigate CineECG, a new 12-lead ECG based analysis method designed to directly estimate the average cardiac anatomical location of activation over time. We describe CineECG calculation and a novel comparison parameter, the average isochrone position (AIP). In a model study, fourteen different activation sequences were simulated and corresponding 12-lead ECGs were computed. The CineECG was compared to AIP in terms of location and direction. In addition, 67-lead body surface potential maps from ten patients were used to study the sensitivity of CineECG to electrode mispositioning and anatomical model selection. Epicardial activation maps from four patients were used for further evaluation. The average distance between CineECG and AIP across the fourteen sequences was 23.7 ± 2.4 mm, with significantly better agreement in the terminal (27.3 ± 5.7 mm) versus the initial QRS segment (34.2 ± 6.1 mm). Up to four cm variation in electrode positioning produced an average distance of 6.5 ± 4.5 mm between CineECG trajectories, while substituting a generic heart/torso model for a patient-specific one produced an average difference of 6.1 ± 4.8 mm. Dominant epicardial activation map features were recovered. Qualitatively, CineECG captured significant features of activation sequences and was robust to electrode misplacement. CineECG provides a realistic representation of the average cardiac activation in normal and diseased hearts. In particular, the terminal segment of the CineECG might be useful to detect pathology.

Original languageEnglish
Pages (from-to)105128
JournalComputers in Biology and Medicine
Volume141
DOIs
Publication statusPublished - Feb 2022

Keywords

  • Electrocardiography/methods
  • Electrodes
  • Heart/diagnostic imaging
  • Humans
  • Models, Anatomic

Cite this