Cobalt ions inhibit negative feedback in the outer retina by blocking hemichannels on horizontal cells

I. Fahrenfort, T. Sjoerdsma, H. Ripps, M. Kamermans

Research output: Contribution to journalArticleAcademicpeer-review

33 Citations (Scopus)

Abstract

In goldfish, negative feedback from horizontal cells to cones shifts the activation function of the Ca2+ current of the cones to more negative potentials. This shift increases the amount of Ca2+ flowing into the cones, resulting in an increase in glutamate release. The increased glutamate release forms the basis of the feedback-mediated responses in second-order neurons, such as the surround-induced responses of bipolar cells and the spectral coding of horizontal cells. Low concentrations of Co2+ block these feedback-mediated responses in turtle retina. The mechanism by which this is accomplished is unknown. We studied the effects of Co2+ on the cone/horizontal network of goldfish retina and found that Co2+ greatly reduced the feedback-mediated responses in both cones and horizontal cells in a GABA-independent way. The reduction of the feedback-mediated responses is accompanied by a small shift of the Ca2+ current of the cones to positive potentials. We have previously shown that hemichannels on the tips of the horizontal cell dendrites are involved in the modulation of the Ca2+ current in cones. Both the absence of this Co2+-induced shift of the Ca2+ current in the absence of a hemichannel conductance and the sensitivity of Cx26 hemichannels to low concentrations of Co2+ are consistent with a role for hemichannels in negative feedback from horizontal cells to cones
Original languageEnglish
Pages (from-to)501-511
JournalVisual neuroscience
Volume21
Issue number4
DOIs
Publication statusPublished - 2004

Cite this