Cyclopentenyl cytosine-induced activation of deoxycytidine kinase increases gemcitabine anabolism and cytotoxicity in neuroblastoma

Jörgen Bierau, Albert H. van Gennip, René Leen, Rutger Meinsma, Huib N. Caron, André B. P. van Kuilenburg

Research output: Contribution to journalArticleAcademicpeer-review

18 Citations (Scopus)

Abstract

The effect of the CTP synthetase inhibitor cyclopentenyl cytosine (CPEC) on the metabolism and cytotoxicity of 2',2'-difluorodeoxycytidine (dFdC, gemcitabine) and the expression and activity of deoxycytidine kinase (dCK) was studied in human neuroblastoma cell lines. The cytotoxicity of dFdC and CPEC was studied in a panel of MYCN-amplified and MYCN-single-copy neuroblastoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazollum bromide-assays. dFdC-metabolism was studied in SK-N-BE(2)c cells using [H-3]-radiolabeled dFdC. dCK activity and expression were measured using enzyme assays, immunoblot and quantitative PCR, respectively. Both MYCN-amplified and MYCN-single-copy neuroblastoma cell lines were highly sensitive to dFdC, with concentration of the drug resulting in 50% effect when compared to untreated controls (ED50) values in the nanomolar range after a 3-h exposure to dFdC. There was no correlation of the observed ED50 with the dCK activity. Treatment with dFdC induced cell death in MYCN-amplified cells whereas MYCN-single-copy-cell lines underwent neuronal differentiation. Pre-incubation with CPEC significantly increased dFdC-cytotoxicity from 1.3 to 5.3-fold in 13 out of 15 cell lines. [H-3]dFdC-anabolism increased 6-44 fold in SK-N-BE(2)c cells after incubation with CPEC and was paralleled by a significant increase in expression and activity of dCK. In conclusion, the combination of dFdC and CPEC is highly toxic to neuroblastoma in vitro
Original languageEnglish
Pages (from-to)105-113
JournalCancer Chemotherapy and Pharmacology
Volume57
Issue number1
DOIs
Publication statusPublished - 2006

Cite this