Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations

Simon-Shlomo Poil, Rick Jansen, Karlijn van Aerde, Jaap Timmerman, Arjen B Brussaard, Huibert D Mansvelder, Klaus Linkenkaer-Hansen

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)

Abstract

Ongoing neuronal oscillations invivo exhibit non-random amplitude fluctuations as reflected in a slow decay of temporal auto-correlations that persist for tens of seconds. Interestingly, the decay of auto-correlations is altered in several brain-related disorders, including epilepsy, depression and Alzheimer's disease, suggesting that the temporal structure of oscillations depends on intact neuronal networks in the brain. Whether structured amplitude modulation occurs only in the intact brain or whether isolated neuronal networks can also give rise to amplitude modulation with a slow decay is not known. Here, we examined the temporal structure of cholinergic fast network oscillations in acute hippocampal slices. For the first time, we show that a slow decay of temporal correlations can emerge from synchronized activity in isolated hippocampal networks from mice, and is maximal at intermediate concentrations of the cholinergic agonist carbachol. Using zolpidem, a positive allosteric modulator of GABA A receptor function, we found that increased inhibition leads to longer oscillation bursts and more persistent temporal correlations. In addition, we asked if these findings were unique for mouse hippocampus, and we therefore analysed cholinergic fast network oscillations in rat prefrontal cortex slices. We observed significant temporal correlations, which were similar in strength to those found in mouse hippocampus and human cortex. Taken together, our data indicate that fast network oscillations with temporal correlations can be induced in isolated networks invitro in different species and brain areas, and therefore may serve as model systems to investigate how altered temporal correlations in disease may be rescued with pharmacology.

Original languageUndefined/Unknown
Pages (from-to)394-403
Number of pages10
JournalEuropean Journal of Neuroscience
Volume34
Issue number3
DOIs
Publication statusPublished - 1 Aug 2011

Keywords

  • Acetylcholine
  • Memory
  • Mouse
  • Ongoing oscillations
  • Temporal auto-correlations

Cite this