Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder

Martijn Figee, Pelle de Koning, Sanne Klaassen, Nienke Vulink, Mariska Mantione, Pepijn van den Munckhof, Richard Schuurman, Guido van Wingen, Thérèse van Amelsvoort, Jan Booij, Damiaan Denys

Research output: Contribution to journalArticleAcademicpeer-review

87 Citations (Scopus)

Abstract

Obsessive-compulsive disorder is a chronic psychiatric disorder related to dysfunctional dopaminergic neurotransmission. Deep brain stimulation (DBS) targeted at the nucleus accumbens (NAc) has recently become an effective treatment for therapy-refractory obsessive-compulsive disorder, but its effect on dopaminergic transmission is unknown. We measured the effects of NAc DBS in 15 patients on the dopamine D2/3 receptor availability in the striatum with [(123)I]iodobenzamide ([(123)I]IBZM) single photon emission computed tomography. We correlated changes in [(123)I]IBZM binding potential (BP) with plasma levels of homovanillic acid (HVA) and clinical symptoms. Acute (1-hour) and chronic (1-year) DBS decreased striatal [(123)I]IBZM BP compared with the nonstimulated condition in the putamen. BP decreases were observed after 1 hour of stimulation, and chronic stimulation was related to concurrent HVA plasma elevations, implying DBS-induced dopamine release. BP decreases in the area directly surrounding the electrodes were significantly correlated with changes in clinical symptoms (45% symptom decrease). NAc DBS induced striatal dopamine release, which was associated with increased HVA plasma levels and improved clinical symptoms, suggesting that DBS may compensate for a defective dopaminergic system
Original languageEnglish
Pages (from-to)647-652
JournalBiological Psychiatry
Volume75
Issue number8
DOIs
Publication statusPublished - 2014

Cite this