Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation

Ward van Rooij, Max Dahele, Hugo Ribeiro Brandao, Alexander R. Delaney, Berend J. Slotman, Wilko F. Verbakel

Research output: Contribution to journalArticleAcademicpeer-review

81 Citations (Scopus)


Purpose: Organ-at-risk (OAR) delineation is a key step in treatment planning but can be time consuming, resource intensive, subject to variability, and dependent on anatomical knowledge. We studied deep learning (DL) for automated delineation of multiple OARs; in addition to geometric evaluation, the dosimetric impact of using DL contours for treatment planning was investigated. Methods and Materials: The following OARs were delineated with DL developed in-house: both submandibular and parotid glands, larynx, cricopharynx, pharyngeal constrictor muscle (PCM), upper esophageal sphincter, brain stem, oral cavity, and esophagus. DL contours were benchmarked against the manual delineation (MD) clinical contours using the Sørensen-Dice similarity coefficient. Automated knowledge-based treatment plans were used. The mean dose to the manually delineated OAR structures was reported for the MD and DL plans. Results: DL delineation of all OARs took <10 seconds per patient. For 7 of 11 OARs, the average Sørensen-Dice similarity coefficient was good (0.78-0.83). However, performance was lower for the esophagus (0.60), brainstem (0.64), PCM (0.68), and cricopharynx (0.73), often because of variations in MD. Although the average dose was statistically significantly higher in the DL plans for the inferior PCM (1.4 Gy) and esophagus (2.2 Gy), these average differences were not clinically significant. Dose to 28 of 209 (13.4%) and 7 of 209 (3.3%) OARs was >2 Gy higher and >2 Gy lower, respectively, in the DL plans. Conclusions: DL-based segmentation for head and neck OARs is fast; for most organs and most patients, it performs sufficiently well for treatment-planning purposes. It has the potential to increase efficiency and facilitate online adaptive radiation therapy.
Original languageEnglish
Pages (from-to)677-684
Number of pages8
JournalInternational Journal of Radiation Oncology Biology Physics
Issue number3
Publication statusPublished - 1 Jul 2019

Cite this