Abstract

Automatic cardiac chamber and left ventricular (LV) myocardium segmentation over the cardiac cycle significantly extends the utilization of contrast-enhanced cardiac CT, potentially enabling in-depth assessment of cardiac function. Therefore, we evaluate an automatic method for cardiac chamber and LV myocardium segmentation in 4D cardiac CT. In this study, 4D contrast-enhanced cardiac CT scans of 1509 patients selected for transcatheter aortic valve implantation with 21,605 3D images, were divided into development (N = 12) and test set (N = 1497). 3D convolutional neural networks were trained with end-systolic (ES) and end-diastolic (ED) images. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) were computed for 3D segmentations at ES and ED in the development set via cross-validation, and for 2D segmentations in four cardiac phases for 81 test set patients. Segmentation quality in the full test set of 1497 patients was assessed visually on a three-point scale per structure based on estimated overlap with the ground truth. Automatic segmentation resulted in a mean DSC of 0.89 ± 0.10 and ASSD of 1.43 ± 1.45 mm in 12 patients in 3D, and a DSC of 0.89 ± 0.08 and ASSD of 1.86 ± 1.20 mm in 81 patients in 2D. The qualitative evaluation in the whole test set of 1497 patients showed that automatic segmentations were assigned grade 1 (clinically useful) in 98.5%, 92.2%, 83.1%, 96.3%, and 91.6% of cases for LV cavity and myocardium, right ventricle, left atrium, and right atrium. Our automatic method using convolutional neural networks performed clinically useful segmentation across the cardiac cycle in a large set of 4D cardiac CT images, potentially enabling in-depth assessment of cardiac function.

Original languageEnglish
Article number105191
Number of pages9
JournalComputers in Biology and Medicine
Volume142
Early online date30 Dec 2021
DOIs
Publication statusPublished - 1 Mar 2022

Keywords

  • 4D contrast-enhanced cardiac CT
  • Convolutional neural network
  • Deep learning
  • Transcatheter aortic valve implantation
  • Whole-heart segmentation

Cite this