Development and validation of a gas chromatography–mass spectrometry method to analyze octanoate enrichments at low concentrations in human plasma

Dewi van Harskamp, Suzan J. G. Knottnerus, Gepke Visser, Johannes B. van Goudoever, Henk Schierbeek

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

A new method for accurately analyzing octanoate enrichment in plasma was developed and validated. Samples were derivatized directly in plasma by transesterification with isobutanol and were analyzed by gas chromatography–mass spectrometry (GC-MS). This method was developed to analyze the precursor enrichment in a stable isotope tracer protocol. Glyceryl tri[1,2,3,4- 13C 4] octanoate, a stable isotope-labeled medium-chain triglyceride (MCT), was orally administered in combination with (1) exclusively MCT or (2) a combination of protein, carbohydrates, and MCT to investigate the metabolic route of oral MCT under various conditions. Accurate analysis of octanoate enrichment in plasma at concentrations as low as 0.43 μM (lower limit of quantification, LLOQ) was performed. This is an improvement of about twenty times for the LLOQ for analysis of the enrichment of octanoate when compared with the gold-standard method for fatty acid analysis (methyl esterification). Moreover, we found that‚ with this gold-standard method, study samples were easily contaminated with (unlabeled) octanoate from other sources, leading to biased, incorrect results. The precision and linearity obtained using the new method were good (coefficient of variation intraday < 9.1%, interday < 9.3%, R 2 of the calibration curve > 0.99). The sensitivity was sufficient for analyzing samples obtained using the stable isotope protocol. This new method is more sensitive than methyl esterification and it minimizes the risk of contamination. [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)5789-5797
Number of pages9
JournalAnalytical and bioanalytical chemistry
Volume412
Issue number23
Early online date2020
DOIs
Publication statusPublished - 1 Sept 2020

Keywords

  • Elongation
  • Mass spectrometry
  • Medium-chain triglycerides
  • Stable isotopes

Cite this