Development of a Reinforcement Learning Algorithm to Optimize Corticosteroid Therapy in Critically Ill Patients with Sepsis

Razvan Bologheanu, Lorenz Kapral, Daniel Laxar, Mathias Maleczek, Christoph Dibiasi, Sebastian Zeiner, Asan Agibetov, Ari Ercole, Patrick Thoral, Paul Elbers, Clemens Heitzinger, Oliver Kimberger

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

Background: The optimal indication, dose, and timing of corticosteroids in sepsis is controversial. Here, we used reinforcement learning to derive the optimal steroid policy in septic patients based on data on 3051 ICU admissions from the AmsterdamUMCdb intensive care database. Methods: We identified septic patients according to the 2016 consensus definition. An actor-critic RL algorithm using ICU mortality as a reward signal was developed to determine the optimal treatment policy from time-series data on 277 clinical parameters. We performed off-policy evaluation and testing in independent subsets to assess the algorithm’s performance. Results: Agreement between the RL agent’s policy and the actual documented treatment reached 59%. Our RL agent’s treatment policy was more restrictive compared to the actual clinician behavior: our algorithm suggested withholding corticosteroids in 62% of the patient states, versus 52% according to the physicians’ policy. The 95% lower bound of the expected reward was higher for the RL agent than clinicians’ historical decisions. ICU mortality after concordant action in the testing dataset was lower both when corticosteroids had been withheld and when corticosteroids had been prescribed by the virtual agent. The most relevant variables were vital parameters and laboratory values, such as blood pressure, heart rate, leucocyte count, and glycemia. Conclusions: Individualized use of corticosteroids in sepsis may result in a mortality benefit, but optimal treatment policy may be more restrictive than the routine clinical practice. Whilst external validation is needed, our study motivates a ‘precision-medicine’ approach to future prospective controlled trials and practice.
Original languageEnglish
Article number1513
JournalClinical Chemistry
Volume12
Issue number4
DOIs
Publication statusPublished - 1 Feb 2023

Keywords

  • artificial intelligence
  • corticosteroids
  • outcomes
  • reinforcement learning
  • sepsis

Cite this