Exploring the role of the nucleus accumbens in adaptive behavior using concurrent intracranial and extracranial electrophysiological recordings in humans

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Recent human electrophysiological evidence implicated u-band communication between the nucleus accumbens (NAc) and frontal and parietal cortex in cognitive flexibility. Since the NAc is connected with the motor system, we tested whether phase and amplitude-based NAc-cortical connectivity and power modulation likewise underlie flexibility in motor action control. We combined concurrently recorded intracranial and extracranial electroencephalograms from seven psychiatric patients implanted with deep brain stimulation (DBS) electrodes who performed a stop signal task (SST). Inhibition success, as opposed to failure, was associated with greater prestimulus information flow from right NAc to medial frontal cortex through phase coupling of u oscillations. Inhibition failure evoked u power increases in the left NAc and medial frontal cortex, whereas pari-eto-occipital cortex showed an α power decrease. We conclude that NAc-to-frontal u connectivity, possibly facilitating processing of task-relevant information, and a and u power modulations, possibly reflecting posterror engagement of cognitive control, contribute to adaptive behavior pertaining motor control.
Original languageEnglish
Article numberENEURO.0105-20.2020
Pages (from-to)1-11
Number of pages11
JournaleNeuro
Volume7
Issue number6
DOIs
Publication statusPublished - 2020

Keywords

  • Cortico-striatal connectivity
  • Electroencephalography
  • Intracranial EEG
  • Spectral power
  • Stop signal task
  • U oscillations

Cite this