Familial hypercholesterolemia. Acceptor splice site (G-->C) mutation in intron 7 of the LDL-R gene: alternate RNA editing causes exon 8 skipping or a premature stop codon in exon 8. LDL-R(Honduras-1) [LDL-R1061(-1) G-->C]

L. Yu, E. Heere-Ress, B. Boucher, J. C. Defesche, J. Kastelein, M. A. Lavoie, J. Genest

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)

Abstract

Familial hypercholesterolemia (FH) is an autosomal dominant lipoprotein disorder caused by defects in the low density lipoprotein (LDL) receptor (R) gene. We report a novel mutation of the LDL-R gene in a 38-year-old man with homozygous FH from the province of Trujilo in Northern Honduras. The patient presented with tendinous xanthomas over the extensor tendons as well as xanthelasmas at sites of surgical scars. He was diagnosed with severe coronary artery disease requiring revascularization at age 29. After an unsuccessful course of treatment with simvastatin, the patient has been treated with plasma apheresis and macromolecular plasma filtration bi-monthly. Haplotyping of the LDL-R gene revealed homozygosity for the rare 'J' allele and a loss of the EcoRV restriction cleavage site in exon 8. Single stranded conformational polymorphism of exons 3, 6, 7, 9, 10 and 8 reveals an abnormal migration pattern in exon 8. Direct sequencing of the promoter region, exons 1, 4, 8 and 13 revealed two RFLP's and a novel mutation in intron 7. This mutation consists of G-->C transposition at the acceptor splice site of exon 8 at the last nucleotide of intron 7 [LDL-R1061(-1)G-->C]. Reverse transcriptase (RT) PCR amplification of RNA from monocytes obtained from the patient reveals a decrease in LDL-R mRNA (52% of control) and skipping of exon 8 (approximately 38%, as assessed by densitometric scanning of the amplified fragments) to form a new RNA transcript that includes exons 7 and 9 without frameshift. Alternative RNA editing leads to a new cryptic acceptor splice site 17 bp downstream in exon 8 producing a frameshift mutation and a predicted premature stop codon 1138 bp from the transcriptional start site (approxiamtely 62%). Western blotting analysis using a monoclonal antibody (C7) directed at the amino terminus of the LDL-R protein reveals a marked reduction in LDL-R protein expressed in monocytes obtained from the patient. We conclude that LDL-R1061(-1)G-->C is a novel mutation of the LDL-R gene that results in marked decrease in LDL-R mRNA levels and protein expression by two alternate RNA editing mechanisms, that cause skipping of exon 8 or the use of a novel cryptic acceptor splice site in exon 8 with a frameshift and premature stop codon. The patient continues to do well on selective plasma filtration but developed bilateral severe carotid artery disease requiring surgical intervention
Original languageEnglish
Pages (from-to)125-131
JournalAtherosclerosis
Volume146
Issue number1
DOIs
Publication statusPublished - 1999

Cite this