TY - JOUR
T1 - Functional analysis of the anti-adalimumab response using patient-derived monoclonal antibodies
AU - van Schouwenburg, Pauline A.
AU - Kruithof, Simone
AU - Votsmeier, Christian
AU - van Schie, Karin
AU - Hart, Margreet H.
AU - de Jong, Rob N.
AU - van Buren, Esther E. L.
AU - van Ham, Marieke
AU - Aarden, Lucien
AU - Wolbink, Gertjan
AU - Wouters, Diana
AU - Rispens, Theo
PY - 2014
Y1 - 2014
N2 - The production of antibodies to adalimumab in autoimmune patients treated with adalimumab is shown to diminish treatment efficacy. We previously showed that these antibodies are almost exclusively neutralizing, indicating a restricted response. Here, we investigated the characteristics of a panel of patient-derived monoclonal antibodies for binding to adalimumab. Single B-cells were isolated from two patients, cultured, and screened for adalimumab specificity. Analysis of variable region sequences of 16 clones suggests that the immune response against adalimumab is broad, involving multiple B-cell clones each using different combinations of V(D)J segments. A strong bias for replacement mutations in the complementarity determining regions was found, indicating an antigen-driven response. We recombinantly expressed 11 different monoclonal antibodies and investigated their affinity and specificity. All clones except one are of high affinity (Kd between 0.6 and 233 pm) and compete with TNF as well as each other for binding to adalimumab. However, binding to a panel of single-point mutants of adalimumab indicates markedly different fine specificities that also result in a differential tendency of each clone to form dimeric and multimeric immune complexes. We conclude that although all anti-adalimumab antibodies compete for binding to TNF, the response is clonally diverse and involves multiple epitopes on adalimumab. These results are important for understanding the relationship between self and non-self or idiotypic determinants on therapeutic antibodies and their potential immunogenicity
AB - The production of antibodies to adalimumab in autoimmune patients treated with adalimumab is shown to diminish treatment efficacy. We previously showed that these antibodies are almost exclusively neutralizing, indicating a restricted response. Here, we investigated the characteristics of a panel of patient-derived monoclonal antibodies for binding to adalimumab. Single B-cells were isolated from two patients, cultured, and screened for adalimumab specificity. Analysis of variable region sequences of 16 clones suggests that the immune response against adalimumab is broad, involving multiple B-cell clones each using different combinations of V(D)J segments. A strong bias for replacement mutations in the complementarity determining regions was found, indicating an antigen-driven response. We recombinantly expressed 11 different monoclonal antibodies and investigated their affinity and specificity. All clones except one are of high affinity (Kd between 0.6 and 233 pm) and compete with TNF as well as each other for binding to adalimumab. However, binding to a panel of single-point mutants of adalimumab indicates markedly different fine specificities that also result in a differential tendency of each clone to form dimeric and multimeric immune complexes. We conclude that although all anti-adalimumab antibodies compete for binding to TNF, the response is clonally diverse and involves multiple epitopes on adalimumab. These results are important for understanding the relationship between self and non-self or idiotypic determinants on therapeutic antibodies and their potential immunogenicity
U2 - https://doi.org/10.1074/jbc.M114.615500
DO - https://doi.org/10.1074/jbc.M114.615500
M3 - Article
C2 - 25326381
SN - 0021-9258
VL - 289
SP - 34482
EP - 34488
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -