GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats

Kirk M. Habegger, Henriette Kirchner, Chun-Xia Yi, Kristy M. Heppner, Dan Sweeney, Nickki Ottaway, Jenna Holland, Sarah Amburgy, Christine Raver, Radhakrishna Krishna, Timo D. Müller, Diego Perez-Tilve, Paul T. Pfluger, Silvana Obici, Richard D. DiMarchi, David A. D'Alessio, Randy J. Seeley, Matthias H. Tschöp

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)

Abstract

Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy
Original languageEnglish
Pages (from-to)3261-3267
JournalDiabetes
Volume62
Issue number9
DOIs
Publication statusPublished - 2013

Cite this