TY - JOUR
T1 - HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy
AU - Milano, Annalisa
AU - Vermeer, Alexa M. C.
AU - Lodder, Elisabeth M.
AU - Barc, Julien
AU - Verkerk, Arie O.
AU - Postma, Alex V.
AU - van der Bilt, Ivo A. C.
AU - Baars, Marieke J. H.
AU - van Haelst, Paul L.
AU - Caliskan, Kadir
AU - Hoedemaekers, Yvonne M.
AU - Le Scouarnec, Solena
AU - Redon, Richard
AU - Pinto, Yigal M.
AU - Christiaans, Imke
AU - Wilde, Arthur A.
AU - Bezzina, Connie R.
PY - 2014
Y1 - 2014
N2 - Familial forms of primary sinus bradycardia have sometimes been attributed to mutations in HCN4, SCN5A, and ANK2. In these studies, no structural cardiac alterations were reported in mutation carriers. However, a cluster of reports in the literature describe patients presenting with sinus bradycardia in association with left ventricular noncompaction cardiomyopathy (LVNC), pointing to a shared genetic cause. This study sought to identify the genetic defect underlying the combined clinical presentation of bradycardia and LVNC, hypothesizing that these 2 clinical abnormalities have a common genetic cause. Exome sequencing was carried out in 2 cousins from the index family that were affected by the combined bradycardia-LVNC phenotype; shared variants thus identified were subsequently overlaid with the chromosomal regions shared among 5 affected family members that were identified using single nucleotide polymorphism array analysis. The combined linkage analysis and exome sequencing in the index family identified 11 novel variants shared among the 2 affected cousins. One of these, p.Gly482Arg in HCN4, segregated with the combined bradycardia and LVNC phenotype in the entire family. Subsequent screening of HCN4 in 3 additional families with the same clinical combination of bradycardia and LVNC identified HCN4 mutations in each. In electrophysiological studies, all found HCN4 mutations showed a more negative voltage dependence of activation, consistent with the observed bradycardia. Although mutations in HCN4 have been previously linked to bradycardia, our study provides the first evidence to our knowledge that mutations in this ion channel gene also may be associated with structural abnormalities of the myocardium
AB - Familial forms of primary sinus bradycardia have sometimes been attributed to mutations in HCN4, SCN5A, and ANK2. In these studies, no structural cardiac alterations were reported in mutation carriers. However, a cluster of reports in the literature describe patients presenting with sinus bradycardia in association with left ventricular noncompaction cardiomyopathy (LVNC), pointing to a shared genetic cause. This study sought to identify the genetic defect underlying the combined clinical presentation of bradycardia and LVNC, hypothesizing that these 2 clinical abnormalities have a common genetic cause. Exome sequencing was carried out in 2 cousins from the index family that were affected by the combined bradycardia-LVNC phenotype; shared variants thus identified were subsequently overlaid with the chromosomal regions shared among 5 affected family members that were identified using single nucleotide polymorphism array analysis. The combined linkage analysis and exome sequencing in the index family identified 11 novel variants shared among the 2 affected cousins. One of these, p.Gly482Arg in HCN4, segregated with the combined bradycardia and LVNC phenotype in the entire family. Subsequent screening of HCN4 in 3 additional families with the same clinical combination of bradycardia and LVNC identified HCN4 mutations in each. In electrophysiological studies, all found HCN4 mutations showed a more negative voltage dependence of activation, consistent with the observed bradycardia. Although mutations in HCN4 have been previously linked to bradycardia, our study provides the first evidence to our knowledge that mutations in this ion channel gene also may be associated with structural abnormalities of the myocardium
U2 - https://doi.org/10.1016/j.jacc.2014.05.045
DO - https://doi.org/10.1016/j.jacc.2014.05.045
M3 - Article
C2 - 25145517
SN - 0735-1097
VL - 64
SP - 745
EP - 756
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 8
ER -