IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance

M. E. Sewnath, D. P. Olszyna, R. Birjmohun, F. J. ten Kate, D. J. Gouma, T. van der Poll

Research output: Contribution to journalArticleAcademicpeer-review

146 Citations (Scopus)

Abstract

To determine the role of endogenous IL-10 in local antibacterial host defense and in the development of a systemic inflammatory response syndrome during abdominal sepsis, IL-10 gene-deficient (IL-10(-/-)) and wild-type (IL-10(+/+)) mice received an i.p. injection with Escherichia coli. Peritonitis was associated with a bacterial dose-dependent increase in IL-10 concentrations in peritoneal fluid and plasma. The recovery of E. coli from the peritoneal fluid, blood, and lungs was diminished in IL-10(-/-) mice, indicating that endogenous IL-10 impaired bacterial clearance. Despite a lower bacterial load, IL-10(-/-) mice had higher concentrations of TNF, macrophage inflammatory protein-2 and keratinocyte in peritoneal fluid and plasma, and demonstrated more severe multiple organ damage as indicated by clinical chemistry and histopathology. Furthermore, IL-10(-/-) mice showed an increased neutrophil recruitment to the peritoneal cavity. To examine the role of elevated TNF levels in the altered host response in IL-10(-/-) mice, the effect of a neutralizing anti-TNF mAb was determined. Anti-TNF did not influence the clearance of E. coli in either IL-10(+/+) or IL-10(-/-) mice. Furthermore, anti-TNF did not affect leukocyte influx in the peritoneal fluid, multiple organ damage, or survival in IL-10(+/+) mice. In IL-10(-/-) mice, anti-TNF partially attenuated neutrophil recruitment and multiple organ damage, and prevented the increased lethality. These data suggest that although endogenous IL-10 facilitates the outgrowth and dissemination of bacteria during E. coli peritonitis, it protects mice from lethality by attenuating the development of a systemic inflammatory response syndrome by a mechanism that involves inhibition of TNF release
Original languageEnglish
Pages (from-to)6323-6331
JournalJournal of immunology (Baltimore, Md.
Volume166
Issue number10
DOIs
Publication statusPublished - 2001

Cite this