TY - JOUR
T1 - Individual Prediction of Heart Failure Among Childhood Cancer Survivors
AU - Chow, Eric J.
AU - Chen, Yan
AU - Kremer, Leontien C.
AU - Breslow, Norman E.
AU - Hudson, Melissa M.
AU - Armstrong, Gregory T.
AU - Border, William L.
AU - Feijen, Elizabeth A. M.
AU - Green, Daniel M.
AU - Meacham, Lillian R.
AU - Meeske, Kathleen A.
AU - Mulrooney, Daniel A.
AU - Ness, Kirsten K.
AU - Oeffinger, Kevin C.
AU - Sklar, Charles A.
AU - Stovall, Marilyn
AU - van der Pal, Helena J.
AU - Weathers, Rita E.
AU - Robison, Leslie L.
AU - Yasui, Yutaka
PY - 2015
Y1 - 2015
N2 - Purpose To create clinically useful models that incorporate readily available demographic and cancer treatment characteristics to predict individual risk of heart failure among 5-year survivors of childhood cancer. Patients and Methods Survivors in the Childhood Cancer Survivor Study (CCSS) free of significant cardiovascular disease 5 years after cancer diagnosis (n = 13,060) were observed through age 40 years for the development of heart failure (ie, requiring medications or heart transplantation or leading to death). Siblings (n = 4,023) established the baseline population risk. An additional 3,421 survivors from Emma Children's Hospital (Amsterdam, the Netherlands), the National Wilms Tumor Study, and the St Jude Lifetime Cohort Study were used to validate the CCSS prediction models. Results Heart failure occurred in 285 CCSS participants. Risk scores based on selected exposures (sex, age at cancer diagnosis, and anthracycline and chest radiotherapy doses) achieved an area under the curve of 0.74 and concordance statistic of 0.76 at or through age 40 years. Validation cohort estimates ranged from 0.68 to 0.82. Risk scores were collapsed to form statistically distinct low-, moderate-, and high-risk groups, corresponding to cumulative incidences of heart failure at age 40 years of 0.5% (95% CI, 0.2% to 0.8%), 2.4% (95% CI, 1.8% to 3.0%), and 11.7% (95% CI, 8.8% to 14.5%), respectively. In comparison, siblings had a cumulative incidence of 0.3% (95% CI, 0.1% to 0.5%). Conclusion Using information available to clinicians soon after completion of childhood cancer therapy, individual risk for subsequent heart failure can be predicted with reasonable accuracy and discrimination. These validated models provide a framework on which to base future screening strategies and interventions
AB - Purpose To create clinically useful models that incorporate readily available demographic and cancer treatment characteristics to predict individual risk of heart failure among 5-year survivors of childhood cancer. Patients and Methods Survivors in the Childhood Cancer Survivor Study (CCSS) free of significant cardiovascular disease 5 years after cancer diagnosis (n = 13,060) were observed through age 40 years for the development of heart failure (ie, requiring medications or heart transplantation or leading to death). Siblings (n = 4,023) established the baseline population risk. An additional 3,421 survivors from Emma Children's Hospital (Amsterdam, the Netherlands), the National Wilms Tumor Study, and the St Jude Lifetime Cohort Study were used to validate the CCSS prediction models. Results Heart failure occurred in 285 CCSS participants. Risk scores based on selected exposures (sex, age at cancer diagnosis, and anthracycline and chest radiotherapy doses) achieved an area under the curve of 0.74 and concordance statistic of 0.76 at or through age 40 years. Validation cohort estimates ranged from 0.68 to 0.82. Risk scores were collapsed to form statistically distinct low-, moderate-, and high-risk groups, corresponding to cumulative incidences of heart failure at age 40 years of 0.5% (95% CI, 0.2% to 0.8%), 2.4% (95% CI, 1.8% to 3.0%), and 11.7% (95% CI, 8.8% to 14.5%), respectively. In comparison, siblings had a cumulative incidence of 0.3% (95% CI, 0.1% to 0.5%). Conclusion Using information available to clinicians soon after completion of childhood cancer therapy, individual risk for subsequent heart failure can be predicted with reasonable accuracy and discrimination. These validated models provide a framework on which to base future screening strategies and interventions
U2 - https://doi.org/10.1200/JCO.2014.56.1373
DO - https://doi.org/10.1200/JCO.2014.56.1373
M3 - Article
C2 - 25287823
SN - 0732-183X
VL - 33
SP - 394-U26
JO - Journal of clinical oncology
JF - Journal of clinical oncology
IS - 5
ER -