Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin

Inge L. Huibregtse, Veerle Snoeck, An de Creus, Henri Braat, Ester C. de Jong, Sander J. H. van Deventer, Pieter Rottiers

Research output: Contribution to journalArticleAcademicpeer-review

83 Citations (Scopus)

Abstract

Background & Aims: Obtaining antigen-specific immune suppression is an important goal in developing treatments of autoimmune, inflammatory, and allergic gastrointestinal diseases. Oral tolerance is a powerful means for inducing tolerance to a particular antigen, but implementing this strategy in humans has been difficult. Active delivery of recombinant autoantigens or allergens at the intestinal mucosa by genetically modified Lactococcus lactis (L lactis) provides a novel therapeutic approach for inducing tolerance. Methods: We engineered the food grade bacterium L lactis to secrete ovalbumin (OVA) and evaluated its ability to induce OVA-specific tolerance in OVA T-cell receptor (TCR) transgenic mice (DO11.10). Tolerance induction was assessed by analysis of delayed-type hypersensitivity responses, measurement of cytokines and OVA-specific proliferation, phenotypic analysis, and adoptive transfer experiments. Results: Intragastric administration of OVA-secreting L lactis led to active delivery of OVA at the mucosa and suppression of local and systemic OVA-specific T-cell responses in DO11.10 mice. This suppression was mediated by induction of CD4(+)CD25(-) regulatory T cells that function through a transforming growth factor beta-dependent mechanism. Restimulation of splenocytes and gut-associated lymph node tissue from these mice resulted in a significant OVA-specific decrease in interferon gamma and a significant increase in interleukin-10 production. Furthermore, Foxp3 and CTLA-4 were significantly up-regulated in the CD4(+)CD25(-) population. Conclusions: Mucosal antigen delivery by oral administration of genetically engineered L lactis leads to antigen-specific tolerance. This approach can be used to develop effective therapeutics for systemic and intestinal immune-mediated inflammatory diseases
Original languageEnglish
Pages (from-to)517-528
JournalGastroenterology
Volume133
Issue number2
DOIs
Publication statusPublished - 2007

Cite this