Isolated injuries to the lateral ankle ligaments have no direct effect on syndesmotic stability

Go Sato, Jirawat Saengsin, Rohan Bhimani, Noortje Hagemeijer, Bart Lubberts, Elaheh Ziaei Ziabari, Christopher DiGiovanni, Daniel Guss

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Purpose: This study aim was to detect the impact of lateral ankle ligaments injury on syndesmotic laxity when evaluated arthroscopically in a cadaveric model. The null hypothesis was that lateral ankle ligament injury does not affect the stability of syndesmosis. Methods: Sixteen fresh-frozen above-knee amputated cadaveric specimens were divided into two groups of eight specimens that underwent arthroscopic evaluation of the distal tibiofibular joint. In both the groups, the assessment was first done with all syndesmotic and ankle ligaments intact. Thereafter, Group 1 underwent sequential transection of the three lateral ankle ligaments first to identify the effects of lateral ligament injury: (1) anterior talofibular ligament (ATFL), (2) calcaneofibular ligament (CFL), (3) posterior talofibular ligament (PTFL), then followed by the syndesmotic ligaments, (4) AITFL, (5) Interosseous ligament (IOL), and (6) PITFL. Group 2 underwent sequential transection of the (1) AITFL, (2) ATFL, (3) CFL, (4) IOL, (5) PTFL, and (6) PITFL, which represent the most commonly injured pattern in ankle sprain. In all scenarios, four loading conditions were considered under 100 N of direct force: (1) unstressed, (2) a lateral fibular hook test, (3) anterior to posterior (AP) fibular translation test, and (4) posterior to anterior (PA) fibular translation test. Distal tibiofibular coronal plane diastasis at the anterior and posterior third of syndesmosis, as well as AP and PA sagittal plane translation, were arthroscopically measured. Results: The distal tibiofibular joint remained stable after transection of all lateral ankle ligaments (ATFL, CFL, and PTFL) as well as the AITFL. However, after additional transection of the IOL, the syndesmosis became unstable in both the coronal and sagittal plane. Syndesmosis laxity in the coronal plane was also observed after transection of the ATFL, CFL, AITFL, and IOL. Subsequent transection of the PITFL precipitated syndesmosis laxity in the sagittal plane, as well. Conclusions: The findings from the present study suggest that lateral ankle ligament injuries itself do not directly affect the stability of syndesmosis. However, if it combines with IOL injuries, even partial injuries cause syndesmotic laxity. As a clinical relevance, accurate diagnosis is the key for surgeons to determine syndesmosis fixation whether there is only AITFL injury or combined IOL injury in concomitant acute syndesmotic and lateral ligament injury.
Original languageEnglish
Pages (from-to)3881-3887
Number of pages7
JournalKnee surgery, sports traumatology, arthroscopy
Volume30
Issue number11
Early online date2022
DOIs
Publication statusPublished - Nov 2022

Keywords

  • Lateral ankle ligament injury
  • Syndesmosis stability

Cite this