Lidocaine metabolites inhibit glycine transporter 1 a novel mechanism for the analgesic action of systemic lidocaine?

Robert Werdehausen, David Kremer, Timo Brandenburger, Lukas Schlösser, Janusz Jadasz, Patrick Küry, Inge Bauer, Carmen Aragón, Volker Eulenburg, Henning Hermanns

Research output: Contribution to journalArticleAcademicpeer-review

48 Citations (Scopus)

Abstract

Background: Lidocaine exerts antinociceptive effects when applied systemically. The mechanisms are not fully understood but glycinergic mechanisms might be involved. The synaptic glycine concentration is controlled by glycine transporters. Whereas neurons express two types of glycine transporters, astrocytes specifically express glycine transporter 1 (GlyT1). This study focuses on effects of lidocaine and its major metabolites on GlyT1 function. Methods: The effects of lidocaine and its metabolites monoethylglycinexylidide (MEGX), glycinexylidide, and N-ethylglycine on GlyT1 function were investigated in uptake experiments with [ 14C]-labeled glycine in primary rat astrocytes. Furthermore, the effect of lidocaine and its metabolites on glycine-induced currents were investigated in GlyT1-expressing Xenopus laevis oocytes. Results: Lidocaine reduced glycine uptake only at toxic concentrations. The metabolites MEGX, glycinexylidide, and N-ethylglycine, however, significantly reduced glycine uptake (P < 0.05). Inhibition of glycine uptake by a combination of lidocaine with its metabolites at a clinically relevant concentration was diminished with increasing extracellular glycine concentrations. Detailed analysis revealed that MEGX inhibits GlyT1 function (P < 0.05), whereas Nethylglycine was identified as an alternative GlyT1 substrate (EC 50 = 55 μM). Conclusions: Although lidocaine does not function directly on GlyT1, its metabolites MEGX and glycinexylidide were shown to inhibit GlyT1-mediated glycine uptake by at least two different mechanisms. Whereas glycinexylidide was demonstrated to be an alternative GlyT1 substrate, MEGX was shown to inhibit GlyT1 activity in both primary astrocytes and in GlyT1-expressing Xenopus laevis oocytes at clinically relevant concentrations. These findings provide new insights into the possible mechanisms for the antinociceptive effect of systemic lidocaine.

Original languageEnglish
Pages (from-to)147-158
Number of pages12
JournalAnesthesiology
Volume116
Issue number1
DOIs
Publication statusPublished - Jan 2012

Cite this