Molecular cloning and expression of human L-pipecolate oxidase

L. IJlst, I. de Kromme, W. Oostheim, R. J. Wanders

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)

Abstract

In higher eukaryotes L-lysine can be degraded via two distinct routes including the saccharopine pathway and the L-pipecolate pathway. The saccharopine pathway is the primary route of degradation of lysine in most tissues except the brain in which the L-pipecolate pathway is most active. L-pipecolate is formed from L-lysine via two enzymatic reactions and then undergoes dehydrogenation to Delta(1)-piperideine-6-carboxylate. At least in humans and monkeys, this is brought about by the enzyme L-pipecolate oxidase (PIPOX) localized in peroxisomes. In literature, several patients have been described with hyperpipecolic acidaemia. The underlying mechanism responsible for the impaired degradation of pipecolate has remained unclear through the years. In order to resolve this question, we have now cloned the human L-pipecolate oxidase cDNA which codes for a protein of 390 amino acids and contains an ADP-betaalphabeta-binding fold compatible with its identity as a flavoprotein. Furthermore, the deduced protein ends in -KAHL at its carboxy terminus which constitutes a typical Type I peroxisomal-targeting signal (PTS I)
Original languageEnglish
Pages (from-to)1101-1105
JournalBiochemical and Biophysical Research Communications
Volume270
Issue number3
DOIs
Publication statusPublished - 2000

Cite this