Mothers with long QT syndrome are at increased risk for fetal death: findings from a multicenter international study

Fetal LQTS Consortium

Research output: Contribution to journalArticleAcademicpeer-review

31 Citations (Scopus)

Abstract

Background: Most fetal deaths are unexplained. Long QT syndrome is a genetic disorder of cardiac ion channels. Affected individuals, including fetuses, are predisposed to sudden death. We sought to determine the risk of fetal death in familial long QT syndrome, in which the mother or father carries the long QT syndrome genotype. In addition, we assessed whether risk differed if the long QT syndrome genotype was inherited from the mother or father. Objective: This was a retrospective review of pregnancies in families with the 3 most common heterozygous pathogenic long QT syndrome genotypes in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3), which occur in approximately 1 in 2000 individuals. The purpose of our study was to compare pregnancy and birth outcomes in familial long QT syndrome with the normal population and between maternal and paternal carriers of the long QT syndrome genotype. We hypothesized that fetal death before (miscarriage) and after (stillbirths) 20 weeks gestation would be increased in familial long QT syndrome compared with the normal population and that the parent of origin would not affect birth outcomes. Study Design: Our study was a multicenter observational case series of 148 pregnancies from 103 families (80 mothers, 23 fathers) with familial long QT syndrome (60 with LQT1, 29 with LQT2, 14 with LQT3) who were recruited from 11 international centers with expertise in hereditary heart rhythm diseases, pediatric and/or adult electrophysiology, and high-risk pregnancies. Clinical databases from these sites were reviewed for long QT syndrome that occurred in men or women of childbearing age (18–40 years). Pregnancy outcomes (livebirth, stillbirth, and miscarriage), birthweights, and gestational age at delivery were compared among long QT syndrome genotypes and between maternal vs paternal long QT syndrome–affected status with the use of logistic regression analysis. Results: Most offspring (80%; 118/148) were liveborn at term; 66% of offspring (73/110) had long QT syndrome. Newborn infants of mothers with long QT syndrome were delivered earlier and, when the data were controlled for gestational age, weighed less than newborn infants of long QT syndrome fathers. Fetal arrhythmias were observed rarely, but stillbirths (fetal death at >20 weeks gestation) were 8 times more frequent in long QT syndrome (4% vs approximately 0.5%); miscarriages (fetal death at ≤20 weeks gestation) were 2 times that of the general population (16% vs 8%). The likelihood of fetal death was significantly greater with maternal vs paternal long QT syndrome (24.4% vs 3.4%; P=.036). Only 10% of all fetal deaths underwent postmortem long QT syndrome testing; 2 of 3 cases were positive for the family long QT syndrome genotype. Conclusion: This is the first report to demonstrate that mothers with long QT syndrome are at increased risk of fetal death and to uncover a previously unreported cause of stillbirth. Our results suggest that maternal effects of long QT syndrome channelopathy may cause placental or myometrial dysfunction that confers increased susceptibility to fetal death and growth restriction in newborn survivors, regardless of long QT syndrome status.
Original languageEnglish
Pages (from-to)263.e1-263.e11
Number of pages12
JournalAmerican Journal of Obstetrics and Gynecology
Volume222
Issue number3
Early online date11 Sept 2019
DOIs
Publication statusPublished - Mar 2020

Cite this