N-glycolylneuraminic acid binding of avian H7 influenza A viruses

Cindy M. Spruit, Xueyong Zhu, Frederik Broszeit, Alvin X. Han, Roosmarijn van der Woude, Kim M. Bouwman, Michel M. T. Luu, Colin A. Russell, Ian A. Wilson, Geert-Jan Boons, Robert P. de Vries

Research output: Contribution to journalArticleAcademic

Abstract

Influenza A viruses initiate infection by binding to glycans with terminal sialic acids present on the cell surface. Hosts of influenza A viruses variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in the majority of mammals including horses, pigs, and mice, but is absent in humans, ferrets, and birds. Intriguingly, the only known naturally occurring influenza A viruses that exclusively bind NeuGc are the extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with its NeuGc ligand and observed a high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs. We found that mutation A135E is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. Interestingly, additional mutations S128T, I130V, or a combination of T189A and K193R, converted from NeuAc to NeuGc specificity as determined by glycan microarrays. However, specific binding to NeuGc-terminal glycans on our glycan array did not always correspond with full NeuGc specificity on chicken and equine erythrocytes and tracheal epithelium sections. Phylogenetic analysis of avian and equine H7 HAs that investigated the amino acids at positions 128, 130, 135, 189, and 193 reveals a clear distinction between equine and avian residues. The highest variability in amino acids (four different residues) is observed at key position 135, of which only the equine glutamic acid leads to binding of NeuGc. The results demonstrate that avian H7 viruses, although genetically distinct from equine H7 viruses, can bind NeuGc after the introduction of two to three mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors.Author summary Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A virus, these ‘keys’ (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority binds NeuGc. NeuGc is present in species like horses, pigs, and mice, but not in humans, ferrets, and birds. Therefore, NeuGc binding could be a determinant of an Influenza A virus species barrier. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.
Original languageEnglish
JournalbioRxiv
DOIs
Publication statusPublished - 2020

Cite this