TY - JOUR
T1 - Noise sensitivity of Zr-89-Immuno-PET radiomics based on count-reduced clinical images
AU - Somasundaram, Ananthi
AU - Vállez García, David
AU - Pfaehler, Elisabeth
AU - Jauw, Yvonne W S
AU - Zijlstra, Josée M
AU - van Dongen, Guus A M S
AU - Menke-van der Houven van Oordt, Willemien C
AU - Huisman, Marc C
AU - de Vries, Elisabeth G E
AU - Boellaard, Ronald
N1 - Funding Information: This study was funded by the Dutch Cancer Society, POINTING project, grant 10034. Publisher Copyright: © 2022, The Author(s).
PY - 2022/3/3
Y1 - 2022/3/3
N2 - Purpose: Low photon count in 89Zr-Immuno-PET results in images with a low signal-to-noise ratio (SNR). Since PET radiomics are sensitive to noise, this study focuses on the impact of noise on radiomic features from 89Zr-Immuno-PET clinical images. We hypothesise that 89Zr-Immuno-PET derived radiomic features have: (1) noise-induced variability affecting their precision and (2) noise-induced bias affecting their accuracy. This study aims to identify those features that are not or only minimally affected by noise in terms of precision and accuracy. Methods: Count-split 89Zr-Immuno-PET patient scans from previous studies with three different 89Zr-labelled monoclonal antibodies were used to extract radiomic features at 50% (S50p) and 25% (S25p) of their original counts. Tumour lesions were manually delineated on the original full-count 89Zr-Immuno-PET scans. Noise-induced variability and bias were assessed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM), respectively. Based on the ICC and SDM values, the radiomic features were categorised as having poor [0, 0.5), moderate [0.5, 0.75), good [0.75, 0.9), or excellent [0.9, 1] precision and accuracy. The number of features classified into these categories was compared between the S50p and S25p images using Fisher’s exact test. All p values < 0.01 were considered statistically significant. Results: For S50p, a total of 92% and 90% features were classified as having good or excellent ICC and SDM respectively, while for S25p, these decreased to 81% and 31%. In total, 148 features (31%) showed robustness to noise with good or moderate ICC and SDM in both S50p and S25p. The number of features classified into the four ICC and SDM categories between S50p and S25p was significantly different statistically. Conclusion: Several radiomic features derived from low SNR 89Zr-Immuno-PET images exhibit noise-induced variability and/or bias. However, 196 features (43%) that show minimal noise-induced variability and bias in S50p images have been identified. These features are less affected by noise and are, therefore, suitable candidates to be further studied as prognostic and predictive quantitative biomarkers in 89Zr-Immuno-PET studies.
AB - Purpose: Low photon count in 89Zr-Immuno-PET results in images with a low signal-to-noise ratio (SNR). Since PET radiomics are sensitive to noise, this study focuses on the impact of noise on radiomic features from 89Zr-Immuno-PET clinical images. We hypothesise that 89Zr-Immuno-PET derived radiomic features have: (1) noise-induced variability affecting their precision and (2) noise-induced bias affecting their accuracy. This study aims to identify those features that are not or only minimally affected by noise in terms of precision and accuracy. Methods: Count-split 89Zr-Immuno-PET patient scans from previous studies with three different 89Zr-labelled monoclonal antibodies were used to extract radiomic features at 50% (S50p) and 25% (S25p) of their original counts. Tumour lesions were manually delineated on the original full-count 89Zr-Immuno-PET scans. Noise-induced variability and bias were assessed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM), respectively. Based on the ICC and SDM values, the radiomic features were categorised as having poor [0, 0.5), moderate [0.5, 0.75), good [0.75, 0.9), or excellent [0.9, 1] precision and accuracy. The number of features classified into these categories was compared between the S50p and S25p images using Fisher’s exact test. All p values < 0.01 were considered statistically significant. Results: For S50p, a total of 92% and 90% features were classified as having good or excellent ICC and SDM respectively, while for S25p, these decreased to 81% and 31%. In total, 148 features (31%) showed robustness to noise with good or moderate ICC and SDM in both S50p and S25p. The number of features classified into the four ICC and SDM categories between S50p and S25p was significantly different statistically. Conclusion: Several radiomic features derived from low SNR 89Zr-Immuno-PET images exhibit noise-induced variability and/or bias. However, 196 features (43%) that show minimal noise-induced variability and bias in S50p images have been identified. These features are less affected by noise and are, therefore, suitable candidates to be further studied as prognostic and predictive quantitative biomarkers in 89Zr-Immuno-PET studies.
KW - Bias
KW - Noise
KW - Precision
KW - Radiomics
KW - Repeatability
KW - Reproducibility
KW - Zr-89-Immuno PET
UR - http://www.scopus.com/inward/record.url?scp=85126142508&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/s40658-022-00444-4
DO - https://doi.org/10.1186/s40658-022-00444-4
M3 - Article
C2 - 35239050
SN - 2197-7364
VL - 9
SP - 16
JO - EJNMMI physics
JF - EJNMMI physics
IS - 1
M1 - 16
ER -