Nudging within learning health systems: next generation decision support to improve cardiovascular care

Yang Chen, Steve Harris, Yvonne Rogers, Tariq Ahmad, Folkert W Asselbergs

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)

Abstract

The increasing volume and richness of healthcare data collected during routine clinical practice have not yet translated into significant numbers of actionable insights that have systematically improved patient outcomes. An evidence-practice gap continues to exist in healthcare. We contest that this gap can be reduced by assessing the use of nudge theory as part of clinical decision support systems (CDSS). Deploying nudges to modify clinician behaviour and improve adherence to guideline-directed therapy represents an underused tool in bridging the evidence-practice gap. In conjunction with electronic health records (EHRs) and newer devices including artificial intelligence algorithms that are increasingly integrated within learning health systems, nudges such as CDSS alerts should be iteratively tested for all stakeholders involved in health decision-making: clinicians, researchers, and patients alike. Not only could they improve the implementation of known evidence, but the true value of nudging could lie in areas where traditional randomized controlled trials are lacking, and where clinical equipoise and variation dominate. The opportunity to test CDSS nudge alerts and their ability to standardize behaviour in the face of uncertainty may generate novel insights and improve patient outcomes in areas of clinical practice currently without a robust evidence base.

Original languageEnglish
Pages (from-to)1296-1306A
Number of pages11
JournalEuropean Heart journal
Volume43
Issue number13
DOIs
Publication statusPublished - 1 Apr 2022
Externally publishedYes

Keywords

  • Clinical decision support system
  • Electronic health record
  • Learning health system
  • Nudge
  • Nudge theory

Cite this