Nutrients released by gastric epithelial cells enhance Helicobacter pylori growth

Karin van Amsterdam, Arie van der Ende

Research output: Contribution to journalArticleAcademicpeer-review

28 Citations (Scopus)

Abstract

Background. Helicobacter pylori survives and proliferates in the human gastric mucosa. In this niche, H. pylori adheres to the gastric epithelial cells near the tight junctions. In vitro, H. pylori proliferated well in tissue-culture medium near gastric epithelial cells. However, in the absence of epithelial cells, growth of H. pylori could only be established in tissue-culture medium when, prior to the experiment, it was preincubated near gastric epithelial cells. Therefore, we aimed to determine whether diffusion of nutrients derived from epithelial cells was required for H. pylori growth in Dulbecco's modified Eagle's minimal essential medium (DMEM) cell culture medium. Materals and Methods. Cell culture conditions essential for H. pylori growth in vitro were determined with gastric epithelial HM02 cells. Results. Deprivation of iron in cell-culture-conditioned DMEM resulted in a growth arrest of H. pylori. However, near gastric epithelial cells, growth of H. pylori was resistant to iron deprivation. Evidently, when residing close to epithelial cells, H. pylori was able to fulfil its iron requirements, even when the DMEM was deprived of iron. Nevertheless, supplementation with iron alone did not restore H. pylori growth in DMEM, hence other nutrients were deficient as well in the absence of epithelial cells. Growth of H. pylori in DMEM was restored when hypoxanthine, L-alanine and L-proline were added to the DMEM. Conclusions. Diffusion of (precursors of) these nutrients from the gastric epithelial cells is essential for H. pylori growth in vitro. We hypothesize that in vivo, H. pylori favors colonization near the tight junctions, to gain maximal access to the nutrient(s) released by gastric epithelial cells
Original languageEnglish
Pages (from-to)614-621
JournalHELICOBACTER
Volume9
Issue number6
DOIs
Publication statusPublished - 2004

Cite this