Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol

Oliver J Gurney-Champion, Susanne S Rauh, Kevin Harrington, Uwe Oelfke, Frederik B Laun, Andreas Wetscherek

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)

Abstract

PURPOSE: Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time.

METHODS: Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys.

RESULTS: Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively.

CONCLUSIONS: We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min).

Original languageEnglish
Pages (from-to)1003-1015
Number of pages13
JournalMagnetic resonance in medicine
Volume83
Issue number3
DOIs
Publication statusPublished - 1 Mar 2020
Externally publishedYes

Keywords

  • Diffusion-weighted MRI
  • intravoxel incoherent motion
  • perfusion
  • quantitative MRI

Cite this