Presence and utility of electrocardiographic abnormalities in long-term childhood cancer survivors

Esmée C. de Baat, Remy Merkx, Jan M. Leerink, Coen Boerhout, Heleen J. H. van der Pal, Elvira C. van Dalen, Jacqueline Loonen, Dorine Bresters, Eline van Dulmen-den Broeder, Margriet van der Heiden-van der Loo, Marry M. van den Heuvel, Judith L. Kok, Marloes Louwerens, Sebastian J. C. M. M. Neggers, Cecline M. Ronckers, Jop C. Teepen, Wim J. E. Tissing, Andrica C. de Vries, Livia Kapusta, Leontien C. M. KremerAnnelies M. .C. Mavinkurve-Groothuis, Wouter E. M. Kok, Elizabeth A. M. Feijen

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: We assessed the prevalence and diagnostic value of ECG abnormalities for cardiomyopathy surveillance in childhood cancer survivors. Methods: In this cross-sectional study, 1381 survivors (≥5 years) from the Dutch Childhood Cancer Survivor Study part 2 and 272 siblings underwent a long-term follow-up ECG and echocardiography. We compared ECG abnormality prevalences using the Minnesota Code between survivors and siblings, and within biplane left ventricular ejection fraction (LVEF) categories. Among 880 survivors who received anthracycline, mitoxantrone or heart radiotherapy, logistic regression models using least absolute shrinkage and selection operator identified ECG abnormalities associated with three abnormal LVEF categories (<52% in male/<54% in female, <50% and <45%). We assessed the overall contribution of these ECG abnormalities to clinical regression models predicting abnormal LVEF, assuming an absence of systolic dysfunction with a <1% threshold probability. Results: 16% of survivors (52% female, mean age 34.7 years) and 14% of siblings had major ECG abnormalities. ECG abnormalities increased with decreasing LVEF. Integrating selected ECG data into the baseline model significantly improved prediction of sex-specific abnormal LVEF (c-statistic 0.66 vs 0.71), LVEF <50% (0.66 vs 0.76) and LVEF <45% (0.80 vs 0.86). While no survivor met the preset probability threshold in the first two models, the third model used five ECG variables to predict LVEF <45% and was applicable for ruling out (sensitivity 93%, specificity 56%, negative predictive value 99.6%). Calibration and internal validation tests performed well. Conclusion: A clinical prediction model with ECG data (left bundle branch block, left atrial enlargement, left heart axis, Cornell's criteria for left ventricular hypertrophy and heart rate) may aid in ruling out LVEF <45%.

Original languageEnglish
Article numberheartjnl-2023-323474
Pages (from-to)726-734
Number of pages9
JournalHeart
Volume110
Issue number10
Early online date2024
DOIs
Publication statusPublished - 1 May 2024

Keywords

  • Cardiomyopathies
  • Electrocardiography
  • Epidemiology

Cite this