TY - JOUR
T1 - Prognostic value of microvascular resistance and its association to fractional flow reserve
T2 - a DEFINE-FLOW substudy
AU - Eftekhari, Ashkan
AU - Westra, Jelmer
AU - Stegehuis, Valérie
AU - Holm, Niels Ramsing
AU - van de Hoef, Tim P.
AU - Kirkeeide, Richard L.
AU - Piek, Jan J.
AU - Lance Gould, K.
AU - Johnson, Nils P.
AU - Christiansen, Evald H. j
N1 - Funding Information: Competing interests JJP has been consultant for Philips. RLK and NJ and KLG received internal funding from the Weatherhead PET center for Preventing and reversing Atherosclerosis. NJ has an institutional licensing and consulting agreement with Boston Scientific for the smart minimum FFR algorithm; and received significant institutional research support from St. Jude Medical (CONTRAST, NCT02184117) for a different study using intracoronary pressure sensors. NJ received significant institutional research support from Philips/Volcano Corporation for this study. EHC received institutional research support from Philips/ Volcano Corporation for this study. Publisher Copyright: ©
PY - 2022/4/11
Y1 - 2022/4/11
N2 - Objective This study aimed to evaluate the prognostic value of hyperemic microvascular resistance (HMR) and its relationship with hyperemic stenosis resistance (HSR) index and fractional flow reserve (FFR) in stable coronary artery disease. Methods This is a substudy of the DEFINE-FLOW cohort (NCT02328820), which evaluated the prognosis of lesions (n=456) after combined FFR and coronary flow reserve (CFR) assessment in a prospective, non-blinded, non-randomised, multicentre study in 12 centres in Europe and Japan. Participants (n=430) were evaluated by wire-based measurement of coronary pressure, flow and vascular resistance (ComboWire XT, Phillips Volcano, San Diego, California, USA). Results Mean FFR and CFR were 0.82±0.10 and 2.2±0.6, respectively. When divided according to FFR and CFR thresholds (above and below 0.80 and 2.0, respectively), HMR was highest in lesions with FFR>0.80 and CFR<2.0 (n=99) compared with lesions with FFR≤0.80 and CFR≥2.0 (n=68) (2.92±1.2 vs 1.91±0.64 mm Hg/cm/s, p<0.001). The FFR value was proportional to the ratio between HMR and the HMR+HSR (total resistance), 95% limits of agreement (-0.032; 0.019), bias (-0.003±0.02) and correlation (r 2 =0.98, p<0.0001). Cox regression model using HMR as continuous parameter for target vessel failure showed an HR of 1.51, 95% CI (0.9 to 2.4), p=0.10. Conclusions Increased HMR was not associated with a higher rate of adverse clinical events, in this population of mainly stable patients. FFR can be equally well expressed as HMR/HMR+HSR, thereby providing an alternative conceptual formulation linking epicardial severity with microvascular resistance. Trial registration number NCT02328820.
AB - Objective This study aimed to evaluate the prognostic value of hyperemic microvascular resistance (HMR) and its relationship with hyperemic stenosis resistance (HSR) index and fractional flow reserve (FFR) in stable coronary artery disease. Methods This is a substudy of the DEFINE-FLOW cohort (NCT02328820), which evaluated the prognosis of lesions (n=456) after combined FFR and coronary flow reserve (CFR) assessment in a prospective, non-blinded, non-randomised, multicentre study in 12 centres in Europe and Japan. Participants (n=430) were evaluated by wire-based measurement of coronary pressure, flow and vascular resistance (ComboWire XT, Phillips Volcano, San Diego, California, USA). Results Mean FFR and CFR were 0.82±0.10 and 2.2±0.6, respectively. When divided according to FFR and CFR thresholds (above and below 0.80 and 2.0, respectively), HMR was highest in lesions with FFR>0.80 and CFR<2.0 (n=99) compared with lesions with FFR≤0.80 and CFR≥2.0 (n=68) (2.92±1.2 vs 1.91±0.64 mm Hg/cm/s, p<0.001). The FFR value was proportional to the ratio between HMR and the HMR+HSR (total resistance), 95% limits of agreement (-0.032; 0.019), bias (-0.003±0.02) and correlation (r 2 =0.98, p<0.0001). Cox regression model using HMR as continuous parameter for target vessel failure showed an HR of 1.51, 95% CI (0.9 to 2.4), p=0.10. Conclusions Increased HMR was not associated with a higher rate of adverse clinical events, in this population of mainly stable patients. FFR can be equally well expressed as HMR/HMR+HSR, thereby providing an alternative conceptual formulation linking epicardial severity with microvascular resistance. Trial registration number NCT02328820.
KW - coronary artery disease
KW - coronary vessels
KW - microvascular angina
UR - http://www.scopus.com/inward/record.url?scp=85128777948&partnerID=8YFLogxK
U2 - https://doi.org/10.1136/openhrt-2022-001981
DO - https://doi.org/10.1136/openhrt-2022-001981
M3 - Article
C2 - 35410913
SN - 2398-595X
VL - 9
JO - Open Heart
JF - Open Heart
IS - 1
M1 - 001981
ER -