Abstract
Introduction: Irreversible electroporation (IRE) is an ablation modality that applies short, high-voltage electric pulses to unresectable cancers. Although considered a non-thermal technique, temperatures do increase during IRE. This temperature rise sensitizes tumor cells for electroporation as well as inducing partial direct thermal ablation. Aim: To evaluate the extent to which mild and moderate hyperthermia enhance electroporation effects, and to establish and validate in a pilot study cell viability models (CVM) as function of both electroporation parameters and temperature in a relevant pancreatic cancer cell line. Methods: Several IRE-protocols were applied at different well-controlled temperature levels (37 °C ≤ T ≤ 46 °C) to evaluate temperature dependent cell viability at enhanced temperatures in comparison to cell viability at T = 37 °C. A realistic sigmoid CVM function was used based on thermal damage probability with Arrhenius Equation and cumulative equivalent minutes at 43 °C (CEM43°C) as arguments, and fitted to the experimental data using “Non-linear-least-squares”-analysis. Results: Mild (40 °C) and moderate (46 °C) hyperthermic temperatures boosted cell ablation with up to 30% and 95%, respectively, mainly around the IRE threshold Eth,50% electric-field strength that results in 50% cell viability. The CVM was successfully fitted to the experimental data. Conclusion: Both mild- and moderate hyperthermia significantly boost the electroporation effect at electric-field strengths neighboring Eth,50%. Inclusion of temperature in the newly developed CVM correctly predicted both temperature-dependent cell viability and thermal ablation for pancreatic cancer cells exposed to a relevant range of electric-field strengths/pulse parameters and mild moderate hyperthermic temperatures.
Original language | English |
---|---|
Article number | 103619 |
Journal | Journal of Thermal Biology |
Volume | 115 |
DOIs | |
Publication status | Published - 1 Jul 2023 |
Keywords
- Cell death probability
- In vitro experiments
- Irreversible electroporation
- Mathematical models
- Mild hyperthermia
- Thermal ablation