TY - JOUR
T1 - Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens
AU - Li, Dandan
AU - Kordalivand, Neda
AU - Fransen, Marieke F.
AU - Ossendorp, Ferry
AU - Raemdonck, Koen
AU - Vermonden, Tina
AU - Hennink, Wim E.
AU - van Nostrum, Cornelus F.
PY - 2015
Y1 - 2015
N2 - Targeting of antigens to dendritic cells (DCs) to induce strong cellular immune response can be established by loading in a nano-sized carrier and keeping the antigen associated with the particles until they are internalized by DCs. In the present study, a model antigen (ovalbumin, OVA) is immobilized in cationic dextran nanogels via disulfide bonds. These bonds are stable in the extracellular environment but are reduced in the cytosol of DCs due to the presence of glutathione. Reversible immobilization of OVA in the nanogels is demonstrated by the fact that hardly any release of the protein occurred at pH 7 in the absence of glutathione, whereas rapid release of OVA occurs once the nanogels are incubated in buffer with glutathione. Furthermore, these OVA conjugated nanogels show intracellular release of the antigen in DCs and boost the MHC class I antigen presentation, demonstrating the feasibility of this concept for the aimed intracellular antigen delivery. The model antigen ovalbumin is chemically conjugated to the cationic nanogels via disulfide bonds. The protein is thereby covalently immobilized in the nanogels in the extracellular environment. Rapid release of conjugated protein occurs once the nanogels are internalized into cells, due to cleavage of the disulfide bonds in the presence of relatively high intracellular levels of glutathione (2.5-10 × 10-3 m).
AB - Targeting of antigens to dendritic cells (DCs) to induce strong cellular immune response can be established by loading in a nano-sized carrier and keeping the antigen associated with the particles until they are internalized by DCs. In the present study, a model antigen (ovalbumin, OVA) is immobilized in cationic dextran nanogels via disulfide bonds. These bonds are stable in the extracellular environment but are reduced in the cytosol of DCs due to the presence of glutathione. Reversible immobilization of OVA in the nanogels is demonstrated by the fact that hardly any release of the protein occurred at pH 7 in the absence of glutathione, whereas rapid release of OVA occurs once the nanogels are incubated in buffer with glutathione. Furthermore, these OVA conjugated nanogels show intracellular release of the antigen in DCs and boost the MHC class I antigen presentation, demonstrating the feasibility of this concept for the aimed intracellular antigen delivery. The model antigen ovalbumin is chemically conjugated to the cationic nanogels via disulfide bonds. The protein is thereby covalently immobilized in the nanogels in the extracellular environment. Rapid release of conjugated protein occurs once the nanogels are internalized into cells, due to cleavage of the disulfide bonds in the presence of relatively high intracellular levels of glutathione (2.5-10 × 10-3 m).
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85027946346&origin=inward
U2 - https://doi.org/10.1002/adfm.201500894
DO - https://doi.org/10.1002/adfm.201500894
M3 - Article
SN - 1616-301X
VL - 25
SP - 2993
EP - 3003
JO - Advanced functional materials
JF - Advanced functional materials
IS - 20
ER -