TY - JOUR
T1 - RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei
AU - Vondrusková, Eva
AU - van den Burg, Janny
AU - Zíková, Alena
AU - Ernst, Nancy Lewis
AU - Stuart, Kenneth
AU - Benne, Rob
AU - Lukes, Julius
PY - 2005
Y1 - 2005
N2 - Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth inhibition. It also resulted in the loss of both proteins, even when only one of the MRP mRNAs was reduced, indicating a mutual dependence for stability. Elimination of the MRPs gave rise to substantially reduced levels of edited CyB and RPS12 mRNAs but little or no reduction of the level of edited Cox2, Cox3, and A6 mRNAs as measured by poisoned primer extension analyses. In contrast, edited NADH-dehydrogenase (ND) subunit 7 mRNA was increased 5-fold in MRP1+2 double knock-down cells. Furthermore, MRP elimination resulted in reduced levels of Cox1, ND4, and ND5 mRNAs, which are never edited, whereas mitoribosomal 12 S rRNA levels were not affected. These data indicate that MRP1 and MRP2 are not essential for RNA editing per se but, rather, play a regulatory role in the editing of specific transcripts and other RNA processing activities
AB - Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth inhibition. It also resulted in the loss of both proteins, even when only one of the MRP mRNAs was reduced, indicating a mutual dependence for stability. Elimination of the MRPs gave rise to substantially reduced levels of edited CyB and RPS12 mRNAs but little or no reduction of the level of edited Cox2, Cox3, and A6 mRNAs as measured by poisoned primer extension analyses. In contrast, edited NADH-dehydrogenase (ND) subunit 7 mRNA was increased 5-fold in MRP1+2 double knock-down cells. Furthermore, MRP elimination resulted in reduced levels of Cox1, ND4, and ND5 mRNAs, which are never edited, whereas mitoribosomal 12 S rRNA levels were not affected. These data indicate that MRP1 and MRP2 are not essential for RNA editing per se but, rather, play a regulatory role in the editing of specific transcripts and other RNA processing activities
U2 - https://doi.org/10.1074/jbc.M405933200
DO - https://doi.org/10.1074/jbc.M405933200
M3 - Article
C2 - 15504736
SN - 0021-9258
VL - 280
SP - 2429
EP - 2438
JO - The Journal of Biological Chemistry
JF - The Journal of Biological Chemistry
IS - 4
ER -