Role of the alpha-glucanase Agn2p in ascus-wall endolysis following sporulation in fission yeast

Nick Dekker, Jos van Rijssel, Ben Distel, Frans Hochstenbach

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)


During sporulation in the ascomyceteous fungus Schizosaccharomyces pombe, diploid cells undergo differentiation into asci containing four haploid ascospores, which are highly resistant to environmental stresses. Although the morphogenetic processes involved in ascospore formation have been studied extensively, little is known about the molecular mechanism that ensures the release of mature ascospores from the ascus, allowing their dispersal into the environment. Recently, we identified Agn2p as the paralogue of the characterized endo-(1,3)-alpha-glucanase Agn1p, and observed that asci deleted for agn2 are defective in ascospore dispersal. Here, we focus on the cellular and biochemical functions of Agn2p. By placing agn2 under the control of an inducible promoter, we show that expression of agn2 is required for the efficient release of ascospores from their asci. Furthermore, we characterize the enzyme activity of purified recombinant Agn2p and show that Agn2p, like Agn1p, is an endo-(1,3)-alpha-glucanase that produces predominantly (1,3)-alpha-glucan pentasaccharides. Finally, we demonstrate that exogenous addition of purified Agn2p liberated the ascospores from asci deleted for agn2. We propose that Agn2p participates in the endolysis of the ascus wall by hydrolysing its (1,3)-alpha-glucan, thereby assisting in the release of ascospores
Original languageEnglish
Pages (from-to)279-288
JournalYeast (Chichester, England)
Issue number4
Publication statusPublished - 2007

Cite this