SGO1 is involved in the DNA damage response in MYCN-amplified neuroblastoma cells

Yuko Murakami-Tonami, Haruna Ikeda, Ryota Yamagishi, Mao Inayoshi, Shiho Inagaki, Satoshi Kishida, Yosuke Komata, Jan Koster, Ichiro Takeuchi, Yutaka Kondo, Tohru Maeda, Yoshitaka Sekido, Hiroshi Murakami, Kenji Kadomatsu

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)

Abstract

Shugoshin 1 (SGO1) is required for accurate chromosome segregation during mitosis and meiosis; however, its other functions, especially at interphase, are not clearly understood. Here, we found that downregulation of SGO1 caused a synergistic phenotype in cells overexpressing MYCN. Downregulation of SGO1 impaired proliferation and induced DNA damage followed by a senescence-like phenotype only in MYCN-overexpressing neuroblastoma cells. In these cells, SGO1 knockdown induced DNA damage, even during interphase, and this effect was independent of cohesin. Furthermore, MYCN-promoted SGO1 transcription and SGO1 expression tended to be higher in MYCN- or MYC-overexpressing cancers. Together, these findings indicate that SGO1 plays a role in the DNA damage response in interphase. Therefore, we propose that SGO1 represents a potential molecular target for treatment of MYCN-amplified neuroblastoma
Original languageEnglish
Pages (from-to)31615
JournalScientific reports
Volume6
DOIs
Publication statusPublished - 2016

Cite this