TY - JOUR
T1 - 64Cu-Labeled Phosphonate Cross-Bridged Chelator Conjugates of c(RGDyK) for PET/CT Imaging of Osteolytic Bone Metastases
AU - Ocak, Meltem
AU - Beaino, Wissam
AU - White, Alexander
AU - Zeng, Dexing
AU - Cai, Zhengxin
AU - Anderson, Carolyn J.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Objective: The goal of this research was to evaluate c(RGDyK) conjugated to phosphonate-based cross-bridged chelators using Cu-free click chemistry in the 4T1 mouse mammary tumor bone metastasis model in comparison with 64Cu-CB-TE2A-c(RGDyK), which previously showed selective binding to integrin αvβ3 on osteoclasts. Experimental: Two phosphonate-based cross-bridged chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to c(RGDyK) through bio-orthogonal strain-promoted alkyne-azide cycloaddition. In vitro and in vivo evaluation of the 64Cu-labeled TE1A1P-DBCO-c(RGDyK) (AP-c(RGDyK)), TE1K1P-PEG4-DBCO-c(RGDyK) (KP-c(RGDyK)), and CB-TE2A-c(RGDyK) were compared in the 4T1 mouse model of bone metastasis. The affinities of the unconjugated and chelator-c(RGDyK) analogs for αvβ3 integrin were determined using a competitive-binding assay. For in vivo evaluation, BALB/c mice were injected with 1 × 105 4T1/Luc cells in the left ventricle. Formation of metastases was monitored by bioluminescence imaging (BLI) followed by small-animal PET/CT 2 h postinjection of radiotracers. Results: The chelator-peptide conjugates showed similar affinity to integrin αvβ3, in the low nM range. PET imaging demonstrated a higher uptake in bones having metastases for all 64Cu-labeled c(RGDyK) analogs compared with bones in nontumor-bearing mice. The correlation between uptake of 64Cu-AP-c(RGDyK) and 64Cu-KP-c(RGDyK) in bones with metastases based on PET/CT imaging, and osteoclast number based on histomorphometry, was improved over the previously investigated 64Cu-CB-TE2A-c(RGDyK). Conclusion: These data suggest that the phosphonate chelator conjugates of c(RDGyK) peptides are promising PET tracers suitable for imaging tumor-associated osteoclasts in bone metastases.
AB - Objective: The goal of this research was to evaluate c(RGDyK) conjugated to phosphonate-based cross-bridged chelators using Cu-free click chemistry in the 4T1 mouse mammary tumor bone metastasis model in comparison with 64Cu-CB-TE2A-c(RGDyK), which previously showed selective binding to integrin αvβ3 on osteoclasts. Experimental: Two phosphonate-based cross-bridged chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to c(RGDyK) through bio-orthogonal strain-promoted alkyne-azide cycloaddition. In vitro and in vivo evaluation of the 64Cu-labeled TE1A1P-DBCO-c(RGDyK) (AP-c(RGDyK)), TE1K1P-PEG4-DBCO-c(RGDyK) (KP-c(RGDyK)), and CB-TE2A-c(RGDyK) were compared in the 4T1 mouse model of bone metastasis. The affinities of the unconjugated and chelator-c(RGDyK) analogs for αvβ3 integrin were determined using a competitive-binding assay. For in vivo evaluation, BALB/c mice were injected with 1 × 105 4T1/Luc cells in the left ventricle. Formation of metastases was monitored by bioluminescence imaging (BLI) followed by small-animal PET/CT 2 h postinjection of radiotracers. Results: The chelator-peptide conjugates showed similar affinity to integrin αvβ3, in the low nM range. PET imaging demonstrated a higher uptake in bones having metastases for all 64Cu-labeled c(RGDyK) analogs compared with bones in nontumor-bearing mice. The correlation between uptake of 64Cu-AP-c(RGDyK) and 64Cu-KP-c(RGDyK) in bones with metastases based on PET/CT imaging, and osteoclast number based on histomorphometry, was improved over the previously investigated 64Cu-CB-TE2A-c(RGDyK). Conclusion: These data suggest that the phosphonate chelator conjugates of c(RDGyK) peptides are promising PET tracers suitable for imaging tumor-associated osteoclasts in bone metastases.
KW - click chemistry
KW - copper-64
KW - osteoclast
KW - αvβ3 integrin
UR - http://www.scopus.com/inward/record.url?scp=85045300674&partnerID=8YFLogxK
U2 - https://doi.org/10.1089/cbr.2017.2419
DO - https://doi.org/10.1089/cbr.2017.2419
M3 - Article
C2 - 29634417
SN - 1084-9785
VL - 33
SP - 74
EP - 83
JO - Cancer Biotherapy and Radiopharmaceuticals
JF - Cancer Biotherapy and Radiopharmaceuticals
IS - 2
ER -