TY - JOUR
T1 - Temporal patterns of electrical remodeling in canine ventricular hypertrophy: focus on IKs downregulation and blunted beta-adrenergic activation
AU - Stengl, Milan
AU - Ramakers, Christian
AU - Donker, Dirk W.
AU - Nabar, Ashish
AU - Rybin, Andrew V.
AU - Spätjens, Roel L. H. M. G.
AU - van der Nagel, Theo
AU - Wodzig, Will K. W. H.
AU - Sipido, Karin R.
AU - Antoons, Gudrun
AU - Moorman, Antoon F. M.
AU - Vos, Marc A.
AU - Volders, Paul G. A.
PY - 2006
Y1 - 2006
N2 - OBJECTIVES: Electrical remodeling in cardiac hypertrophy often involves the downregulation of K+ currents, including beta-adrenergic (beta-A)-sensitive IKs. Temporal patterns of ion-channel downregulation are poorly resolved. In dogs with complete atrioventricular block (AVB), we examined (1) the time course of molecular alterations underlying IKs downregulation from acute to chronic hypertrophy; and (2) concomitant changing responses of repolarization to beta-adrenergic receptor (beta-AR) stimulation. METHODS AND RESULTS: Serial left-ventricular (LV) biopsies were collected from anesthetized dogs during sinus rhythm (SR; control) and at 3, 7 and 30 days of AVB. KCNQ1 mRNA and protein decreased within 3 days (protein expression 58 +/- 10% of control), remaining low thereafter. beta1-AR mRNA and protein decreased more gradually to 53 +/- 8% at 7 days. In chronic-AVB LV myocytes, IKs -tail density was reduced: 1.4 +/- 0.3 pA/pF versus 2.6 +/- 0.4 pA/pF in controls. beta-A enhancement of IKs was reduced. Isoproterenol shortened action-potential duration in control cells, while causing heterogeneous repolarization responses in chronic AVB. beta-A early afterdepolarizations were induced in 4 of 13 chronic-AVB cells, but not in controls. In intact conscious dogs, isoproterenol shortened QTc at SR (by -8 +/- 3% from 295 ms), left it unaltered at 3 days AVB (+1 +/- 3% from 325 ms) and prolonged QTc at 30 days (+6 +/- 3% from 365 ms). CONCLUSIONS: Profound decrease of KCNQ1 occurs within days after AVB induction and is followed by a more gradual decrease of beta1-AR expression. Downregulation and blunted beta-A activation of IKs contribute to the loss of beta-A-induced shortening of ventricular repolarization, favoring proarrhythmia. Provocation testing with isoproterenol identifies repolarization instability based on acquired channelopathy
AB - OBJECTIVES: Electrical remodeling in cardiac hypertrophy often involves the downregulation of K+ currents, including beta-adrenergic (beta-A)-sensitive IKs. Temporal patterns of ion-channel downregulation are poorly resolved. In dogs with complete atrioventricular block (AVB), we examined (1) the time course of molecular alterations underlying IKs downregulation from acute to chronic hypertrophy; and (2) concomitant changing responses of repolarization to beta-adrenergic receptor (beta-AR) stimulation. METHODS AND RESULTS: Serial left-ventricular (LV) biopsies were collected from anesthetized dogs during sinus rhythm (SR; control) and at 3, 7 and 30 days of AVB. KCNQ1 mRNA and protein decreased within 3 days (protein expression 58 +/- 10% of control), remaining low thereafter. beta1-AR mRNA and protein decreased more gradually to 53 +/- 8% at 7 days. In chronic-AVB LV myocytes, IKs -tail density was reduced: 1.4 +/- 0.3 pA/pF versus 2.6 +/- 0.4 pA/pF in controls. beta-A enhancement of IKs was reduced. Isoproterenol shortened action-potential duration in control cells, while causing heterogeneous repolarization responses in chronic AVB. beta-A early afterdepolarizations were induced in 4 of 13 chronic-AVB cells, but not in controls. In intact conscious dogs, isoproterenol shortened QTc at SR (by -8 +/- 3% from 295 ms), left it unaltered at 3 days AVB (+1 +/- 3% from 325 ms) and prolonged QTc at 30 days (+6 +/- 3% from 365 ms). CONCLUSIONS: Profound decrease of KCNQ1 occurs within days after AVB induction and is followed by a more gradual decrease of beta1-AR expression. Downregulation and blunted beta-A activation of IKs contribute to the loss of beta-A-induced shortening of ventricular repolarization, favoring proarrhythmia. Provocation testing with isoproterenol identifies repolarization instability based on acquired channelopathy
U2 - https://doi.org/10.1016/j.cardiores.2006.07.015
DO - https://doi.org/10.1016/j.cardiores.2006.07.015
M3 - Article
C2 - 16934787
SN - 0008-6363
VL - 72
SP - 90
EP - 100
JO - Cardiovascular research
JF - Cardiovascular research
IS - 1
ER -