The dimer initiation site hairpin mediates dimerization of the human immunodeficiency virus, type 2 RNA genome

A. M. Dirac, H. Huthoff, J. Kjems, B. Berkhout

Research output: Contribution to journalArticleAcademicpeer-review

41 Citations (Scopus)

Abstract

The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses
Original languageEnglish
Pages (from-to)32345-32352
JournalJournal of Biological Chemistry
Volume276
Issue number34
DOIs
Publication statusPublished - 2001

Cite this