TY - JOUR
T1 - The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells
AU - Della Valle, Luciana
AU - Dohmen, Serge E.
AU - Verhagen, Onno J. H. M.
AU - Berkowska, Magdalena A.
AU - Vidarsson, Gestur
AU - Ellen van der Schoot, C.
PY - 2014
Y1 - 2014
N2 - B cell memory to T cell-dependent (TD) Ags are considered to largely reside in class-switched CD27(+) cells. However, we previously observed that anti-RhD (D) Igs cloned from two donors, hyperimmunized with D(+) erythrocytes, were predominantly of the IgM isotype. We therefore analyzed in this study the phenotype and frequency of D- and tetanus toxoid-specific B cells by culturing B cells in limiting dilution upon irradiated CD40L-expressing EL4.B5 cells and testing the culture supernatant. Most Ag-specific B cells for both TD Ags were found to reside in the IgM-expressing B cells, including CD27(-) B cells, in both hyperimmunized donors and nonhyperimmunized volunteers. Only shortly after immunization a sharp increase in Ag-specific CD27(+)IgG(+) B cells was observed. Next, B cells were enriched with D(+) erythrocyte ghosts and sorted as single cells. Sequencing of IGHV, IGLV, IGKV, and BCL6 genes from these D-specific B cell clones demonstrated that both CD27(-)IgM(+) and CD27(+)IgM(+) B cells harbored somatic mutations, documenting their Ag-selected nature. Furthermore, sequencing revealed a clonal relationship between the CD27(-)IgM(+), CD27(+)IgM(+), and CD27(+)IgG(+) B cell subsets. These data strongly support the recently described multiple layers of memory B cells to TD Ags in mice, where IgM(+) B cells represent a memory reservoir which can re-enter the germinal center and ensure replenishment of class-switched memory CD27(+) B cells from Ag-experienced precursors
AB - B cell memory to T cell-dependent (TD) Ags are considered to largely reside in class-switched CD27(+) cells. However, we previously observed that anti-RhD (D) Igs cloned from two donors, hyperimmunized with D(+) erythrocytes, were predominantly of the IgM isotype. We therefore analyzed in this study the phenotype and frequency of D- and tetanus toxoid-specific B cells by culturing B cells in limiting dilution upon irradiated CD40L-expressing EL4.B5 cells and testing the culture supernatant. Most Ag-specific B cells for both TD Ags were found to reside in the IgM-expressing B cells, including CD27(-) B cells, in both hyperimmunized donors and nonhyperimmunized volunteers. Only shortly after immunization a sharp increase in Ag-specific CD27(+)IgG(+) B cells was observed. Next, B cells were enriched with D(+) erythrocyte ghosts and sorted as single cells. Sequencing of IGHV, IGLV, IGKV, and BCL6 genes from these D-specific B cell clones demonstrated that both CD27(-)IgM(+) and CD27(+)IgM(+) B cells harbored somatic mutations, documenting their Ag-selected nature. Furthermore, sequencing revealed a clonal relationship between the CD27(-)IgM(+), CD27(+)IgM(+), and CD27(+)IgG(+) B cell subsets. These data strongly support the recently described multiple layers of memory B cells to TD Ags in mice, where IgM(+) B cells represent a memory reservoir which can re-enter the germinal center and ensure replenishment of class-switched memory CD27(+) B cells from Ag-experienced precursors
U2 - https://doi.org/10.4049/jimmunol.1400706
DO - https://doi.org/10.4049/jimmunol.1400706
M3 - Article
C2 - 24965774
SN - 0022-1767
VL - 193
SP - 1071
EP - 1079
JO - Journal of immunology (Baltimore, Md.
JF - Journal of immunology (Baltimore, Md.
IS - 3
ER -