Abstract
Using synthetic aperture magnetometry (SAM) analyses of magnetoencephalographic (MEG) data, we investigated the variation in cortical response magnitude and frequency as a function of stimulus temporal frequency. In two separate experiments, a reversing checkerboard stimulus was used in the right or left lower visual field at frequencies from 0 to 21 Hz. Average temporal frequency tuning curves were constructed for regions-of-interest located within medial visual cortex and V5/MT. In medial visual cortex, it was found that both the frequency and magnitude of the steady-state response varied as a function of the stimulus frequency, with multiple harmonics of the stimulus frequency being found in the response. The maximum fundamental response was found at a stimulus frequency of 8 Hz, whilst the maximum broadband response occurred at 4 Hz. In contrast, the magnitude and frequency content of the evoked onset response showed no dependency on stimulus frequency. Whilst medial visual cortex showed a power increase during stimulation, extra-striate areas such as V5/MT exhibited a bilateral event-related desynchronisation (ERD). The frequency content of this ERD did not depend on the stimulus frequency but was a broadband power reduction across the 5-20 Hz frequency range. The magnitude of this ERD within V5/MT was strongly low-pass tuned for stimulus frequency, and showed only a moderate preference for stimuli in the contralateral visual field.
Original language | English |
---|---|
Pages (from-to) | 1542-53 |
Number of pages | 12 |
Journal | NEUROIMAGE |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2004 |
Externally published | Yes |
Keywords
- Adult
- Brain Mapping
- Cortical Synchronization
- Dominance, Cerebral/physiology
- Evoked Potentials, Visual/physiology
- Female
- Humans
- Image Processing, Computer-Assisted
- Magnetoencephalography
- Male
- Nerve Net/physiology
- Orientation/physiology
- Pattern Recognition, Visual/physiology
- Photic Stimulation
- Reaction Time/physiology
- Signal Processing, Computer-Assisted
- Time Perception/physiology
- Visual Cortex/physiology
- Visual Pathways/physiology