The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry

Ian P Fawcett, Gareth R Barnes, Arjan Hillebrand, Krish D Singh

Research output: Contribution to journalArticleAcademicpeer-review

96 Citations (Scopus)

Abstract

Using synthetic aperture magnetometry (SAM) analyses of magnetoencephalographic (MEG) data, we investigated the variation in cortical response magnitude and frequency as a function of stimulus temporal frequency. In two separate experiments, a reversing checkerboard stimulus was used in the right or left lower visual field at frequencies from 0 to 21 Hz. Average temporal frequency tuning curves were constructed for regions-of-interest located within medial visual cortex and V5/MT. In medial visual cortex, it was found that both the frequency and magnitude of the steady-state response varied as a function of the stimulus frequency, with multiple harmonics of the stimulus frequency being found in the response. The maximum fundamental response was found at a stimulus frequency of 8 Hz, whilst the maximum broadband response occurred at 4 Hz. In contrast, the magnitude and frequency content of the evoked onset response showed no dependency on stimulus frequency. Whilst medial visual cortex showed a power increase during stimulation, extra-striate areas such as V5/MT exhibited a bilateral event-related desynchronisation (ERD). The frequency content of this ERD did not depend on the stimulus frequency but was a broadband power reduction across the 5-20 Hz frequency range. The magnitude of this ERD within V5/MT was strongly low-pass tuned for stimulus frequency, and showed only a moderate preference for stimuli in the contralateral visual field.

Original languageEnglish
Pages (from-to)1542-53
Number of pages12
JournalNEUROIMAGE
Volume21
Issue number4
DOIs
Publication statusPublished - Apr 2004
Externally publishedYes

Keywords

  • Adult
  • Brain Mapping
  • Cortical Synchronization
  • Dominance, Cerebral/physiology
  • Evoked Potentials, Visual/physiology
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetoencephalography
  • Male
  • Nerve Net/physiology
  • Orientation/physiology
  • Pattern Recognition, Visual/physiology
  • Photic Stimulation
  • Reaction Time/physiology
  • Signal Processing, Computer-Assisted
  • Time Perception/physiology
  • Visual Cortex/physiology
  • Visual Pathways/physiology

Cite this