Thiopalmitoylation of altered peptide ligands enhances their protective effects in an animal model of multiple sclerosis

Nancy C. Cloake, Wissam Beaino, Elisabeth Trifilieff, Judith M. Greer

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

Previously, we have shown that conjugation of a palmitic chain via a thioester bond to a cysteine residue in weakly or nonencephalitogenic or neuritogenic peptides markedly enhances their ability to induce autoimmune disease in an MHC class II-restricted manner. From those studies, however, it was not clear whether thiopalmitoylation of the peptides was merely enhancing their disease-inducing potential or whether the lipid was itself playing a pathogenic role. To investigate this further, we have now tested the effects of thiopalmitoylation on MHC class II-restricted altered peptide ligands (APLs), which are normally protective in experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis.We hypothesized that if thiopalmitoylation of a peptide merely enhances its innate potential, then thiopalmitoylated APLs (S-palmAPLs) should show enhanced protective effects. Alternatively, if thiopalmitoylation itself can make a peptide pathogenic, then S-palmAPLs should have decreased therapeutic potential. We synthesized APLs and corresponding S-palmAPLs and showed that the S-palmAPLs were much more effective than the nonconjugated APL at inhibiting the development of experimental autoimmune encephalomyelitis. This was due to several features of the S-palmAPL:S-palmAPL- primed cells show an enhanced ability to proliferate and produce the antiinflammatory cytokine, IL-10, in vitro. Furthermore, the bioavailability of S-palmAPL was greatly enhanced, compared with the nonpalmitoylated APL, and S-palm APL was taken up more rapidly into dendritic cells and channeled into the MHC class II processing pathway. These results show that thiopalmitoylation of MHC class II-restricted peptides is a simple way to enhance their effects in vivo and could have wide therapeutic application.

Original languageEnglish
Pages (from-to)2244-2251
Number of pages8
JournalJournal of Immunology
Volume192
Issue number5
DOIs
Publication statusPublished - 1 Mar 2014
Externally publishedYes

Cite this