Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics

Markus W. Hollmann, Susanne Herroeder, Katrin S. Kurz, Christian W. Hoenemann, Danja Struemper, Klaus Hahnenkamp, Marcel E. Durieux

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Several beneficial effects of local anesthetics (LAs) were shown to be due to inhibition of G protein-coupled receptor signaling. Differences in exposure time might explain discrepancies in concentrations of LAs required to achieve these protective effects in vivo and in vitro (approximately 100-fold higher). Using Xenopus oocytes and human neutrophils, the authors studied time-dependent effects of LAs on G protein-coupled receptor signaling and characterized possible mechanisms and sites of action. METHODS: Measurement of agonist-induced Ca2+-activated Cl currents, using a two-electrode voltage clamp technique, and determination of superoxide anion production by cytochrome c assay were used to assess the effects of LAs on G protein-coupled receptor signaling in oocytes and primed and activated human neutrophils, respectively. Antisense knockdown of G alpha q protein and inhibition of various proteins within the signaling pathway served for defining mechanisms and sites of action more specifically. RESULTS: LAs attenuated G protein-coupled receptor signaling in both models in a time-dependent and reversible manner (lidocaine reduced lysophosphatidic acid signaling to 19 +/- 3% after 48 h and 25 +/- 2% after 6 h of control response in oocytes and human neutrophils, respectively). Whereas no effect was observed after extracellularly applied or intracellularly injected QX314, a lidocaine analog, using G alpha q-depleted oocytes, time-dependent inhibition also occurred after intracellular injection of QX314 into undepleted oocytes. Inhibition of phosphatases or protein kinases and agonist-independent G-protein stimulation, using guanosine 5'-O-3-thiotriphosphate or aluminum fluoride, did not affect time-dependent inhibition by LAs. CONCLUSION: Inhibition of G protein-coupled receptor signaling by LAs was found to be time dependent and reversible. Critically requiring G alpha q-protein function, this effect is located downstream of guanosine diphosphate-guanosine triphosphate exchange and is not dependent on increased guanosine triphosphatase activity, phosphatases, or protein kinases
Original languageEnglish
Pages (from-to)852-860
JournalAnesthesiology
Volume100
Issue number4
DOIs
Publication statusPublished - 2004

Cite this