Transfection of genes encoding the T cell receptor-associated CD3 complex into COS cells results in assembly of the macromolecular structure

B. Berkhout, B. Alarcon, C. Terhorst

Research output: Contribution to journalArticleAcademicpeer-review

55 Citations (Scopus)

Abstract

The T cell antigen receptor (TCR) consists of a disulfide-linked TCR-alpha/beta heterodimer that is both structurally and functionally associated with a set of four non-covalently linked membrane proteins termed CD3-gamma, -delta, -epsilon, and -zeta. An additional protein described recently, CD3-omega, has been suggested to play a role in assembly of the CD3 complex on the basis of its transient association with the CD3 proteins early during biosynthesis. Association of all the proteins seems to be a prerequisite for intracellular transport, since mutants lacking either the TCR-alpha or -beta protein do not express the CD3 complex on the cell surface. CD3-cDNAs were transfected into COS cells in order to study the protein-protein interactions ruling the assembly of the CD3 macromolecular structure. CD3-delta-epsilon, CD3-gamma-epsilon, and CD3-gamma-delta-epsilon intermediates could be detected. These data indicated that a CD3 core structure could be formed in the absence of the other members of the complex (CD3-zeta, -omega, TCR-alpha, and -beta). Both the individual CD3 chains and the assembled CD3.gamma.delta.epsilon complexes could not be detected on the cellular surface but in an intracellular compartment, probably the endoplasmic reticulum or the cis Golgi. The transfection experiments allowed us to identify the 25-kDa member of the murine CD3 complex as CD3-epsilon m. Furthermore, a 23-kDa glycoprotein seen upon metabolic labeling of human T cells was shown to be an immature form of the CD3-gamma h protein
Original languageEnglish
Pages (from-to)8528-8536
JournalJournal of Biological Chemistry
Volume263
Issue number17
Publication statusPublished - 1988

Cite this