Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression

Esther Lutgens, Marion Gijbels, Marjan Smook, Peter Heeringa, Philip Gotwals, Victor E. Koteliansky, Mat J. A. P. Daemen

Research output: Contribution to journalArticleAcademicpeer-review

289 Citations (Scopus)

Abstract

The transition from stable to rupture-prone and ruptured atherosclerotic plaques involves many processes, including an altered balance between inflammation and fibrosis. An important mediator of both is transforming growth factor (TGF)-beta, and a pivotal role for TGF-beta in atherogenesis has been postulated. Here, we determine the in vivo effects of TGF-beta inhibition on plaque progression and phenotype in atherosclerosis. Recombinant soluble TGF-beta receptor II (TGFbetaRII:Fc), which inhibits TGF-beta signaling, was injected in apolipoprotein E-deficient mice for 12 weeks (50 microg, twice a week intraperitoneally) as early treatment (treatment age 5 to 17 weeks) and delayed treatment (age 17 to 29 weeks). In the early treatment group, inhibition of TGF-beta signaling treatment resulted in a prominent increase in CD3- and CD45-positive cells in atherosclerotic lesions. Most profound effects were found in the delayed treatment group. Plaque area decreased 37.5% after TGFbetaRII:Fc treatment. Moreover, plaque morphology changed into an inflammatory phenotype that was low in fibrosis: lipid cores were 64.6% larger, and inflammatory cell content had increased 2.7-fold. The amount of fibrosis decreased 49.6%, and intraplaque hemorrhages and iron and fibrin deposition were observed frequently. TGFbetaRII:Fc treatment did not result in systemic effects. These results reveal a pivotal role for TGF-beta in the maintenance of the balance between inflammation and fibrosis in atherosclerotic plaques
Original languageEnglish
Pages (from-to)975-982
JournalArteriosclerosis, Thrombosis, and Vascular Biology
Volume22
Issue number6
DOIs
Publication statusPublished - 2002

Cite this